DOI QR코드

DOI QR Code

Clostridium ljundahlii를 이용한 합성가스 발효에서 배지 내 tryptone 및 tungsten의 영향

Effect of Tryptone and Tungsten in Medium on Syngas Fermentation Using Clostridium ljundahlii

  • 박소은 (한경대학교 화학기술연구소) ;
  • 김영기 (한경대학교 화학공학전공)
  • Soeun Park (Research Center of Chemical Technology, Hankyong National University) ;
  • Young-Kee Kim (Department of Chemical Engineering, Hankyong National University)
  • 투고 : 2023.03.06
  • 심사 : 2023.03.23
  • 발행 : 2023.06.10

초록

본 연구에서는 Clostridium ljungdahlii 배양에서 유기질소공급물인 tryptone과 sodium tungstate의 배양액 내 농도가 균주 성장과 아세트산, 에탄올 생산에 대한 영향을 확인하기 위한 실험을 수행하였다. 대조군 실험의 배지 조건(0 g/L tryptone)보다 tryptone 2.5 g/L를 투입한 경우 균주 성장이 144.6% 증가하였고, 에탄올 및 아세트산 생산은 각각 8.6%와 36.7% 향상되었다. 대조군 실험에 사용된 배지의 조건(0.01 µM Na2WO4·2H2O)보다 100배인 1 µM Na2WO4·2H2O를 사용한 실험군에서, 균주 성장과 C2 대사산물의 총생산량에는 큰 차이가 없지만, 에탄올 생산 증가하고 아세트산 생산은 감소하여 에탄올/아세트산 생산비가 0.56로 대조군의 0.24에서 크게 증가하였다.

In this study, an experiment was conducted to investigate the effect of the concentrations of tryptone, an organic nitrogen supplement, and sodium tungstate on the growth of microbial and the production of acetic acid and ethanol in the culture of Clostridium ljungdahlii. Microbial growth increased by 144.6%, and ethanol and acetic acid production improved by 8.6% and 36.7%, respectively, when 2.5 g/L of tryptone was added to the medium of the control experiment (0 g/L tryptone). In the experiment with 1 µM Na2WO4·2H2O, which is 100 times higher than the condition of the medium used in the control experiment (0.01 µM Na2WO4·2H2O), there was no significant difference in microbial growth or total production of C2 metabolites, but ethanol production increased and acetic acid production decreased. As a result, the ethanol/acetic acid production ratio increased significantly from 0.24 in the control experiment to 0.56.

키워드

과제정보

이 논문은 교육부의 재원으로 한국연구재단-이공학개인기초연구지원사업(NRF-2018R1D1A1B07043323)의 지원을 받아 수행한 연구입니다.

참고문헌

  1. K. Liu, H. K. Atiyeh, R. S. Tanner, M. R. Wilkins, and R. L. Huhnke, Fermentative production of ethanol from syngas using novel moderately alkaliphilic strains of Alkalibaculum bacchi, Bioresour. Technol., 104, 336-341 (2012). https://doi.org/10.1016/j.biortech.2011.10.054
  2. M. Mohammadi, G. D. Najafpour, H. Younesi, P. Lahijani, M. H. Uzir, and A. R. Mohamed, Bioconversion of synthesis gas to second generation biofuels: A review, Renew. Sustain. Energy Rev., 15, 4255-4273 (2011). https://doi.org/10.1016/j.rser.2011.07.124
  3. M. Mohammadi, H. Younesi, G. D. Najafpour, and A. R. Mohamed, Sustainable ethanol fermentation from synthesis gas by Clostridium ljungdahlii in a continuous stirred tank bioreactor, J. Chem. Technol. Biotechnol., 87, 837-843 (2012). https://doi.org/10.1002/jctb.3712
  4. S. Schulz, B. Molitor, and L. T. Angenent, Acetate augmentation boosts ethanol production rate and specificity by Clostridium ljungdahlii during gas fermentation with pure carbon monoxide, Bioresour. Technol., 369, 128387 (2023)
  5. X. Sun, H. K. Atiyeh, A. Kumar, and H. Zhang, Enhanced ethanol production by Clostridium ragsdalei from syngas by incorporating biochar in the fermentation medium, Bioresour. Technol., 247, 291-301 (2018). https://doi.org/10.1016/j.biortech.2017.09.060
  6. M. Devarapalli, H. K. Atiyeh, J. R. Phillips, R. S. Lewis, and R. L. Huhnke, Ethanol production during semi-continuous syngas fermentation in a trickle bed reactor using Clostridium ragsdalei, Bioresour. Technol., 209, 56-65 (2016). https://doi.org/10.1016/j.biortech.2016.02.086
  7. P. C. Munasinghe and S. K. Khanal, Syngas fermentation to biofuel: evaluation of carbon monoxide mass transfer coefficient (kLa) in different reactor configurations, Biotechnol. Progr., 26, 1616-1621 (2010). https://doi.org/10.1002/btpr.473
  8. J. J. Orgill, H. K. Atiyeh, M. Devarapalli, J. R. Phillips, R. S. Lewis, and R. L. Huhnke, A comparison of mass transfer coefficients between trickle-bed, hollow fiber membrane and stirred tank reactors, Bioresour. Technol., 133, 340-346 (2013). https://doi.org/10.1016/j.biortech.2013.01.124
  9. Y. Shen, R. C. Brown, and Z. Wen, Syngas fermentation by Clostridium carboxidivorans P7 in a horizontal rotating packed bed biofilm reactor with enhanced ethanol production, Appl. Energy, 187, 585-594 (2017). https://doi.org/10.1016/j.apenergy.2016.11.084
  10. J. Saxena and R. S. Tanner, Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen, Clostridium ragsdalei, J. Ind. Microbiol. Biotechnol., 38, 513-521 (2011). https://doi.org/10.1007/s10295-010-0794-6
  11. J. Saxena and R. S. Tanner, Optimization of a corn steep medium for production of ethanol from synthesis gas fermentation by Clostridium ragsdalei, World J. Microbiol. Biotechnol., 28, 1553-1561 (2012). https://doi.org/10.1007/s11274-011-0959-0
  12. J. Gao, H. K. Atiye, J. R. Phillips, M. R. Wilkins, and R. L. Huhnke, Development of low cost medium for ethanol production from syngas by Clostridium ragsdalei, Bioresour. Technol., 147, 508-515 (2013). https://doi.org/10.1016/j.biortech.2013.08.075
  13. J. R. Phillips, H. K. Atiyeh, R. S. Tanner, J. R. Torres, J. Saxena, M. R. Wilkins, and R. L. Huhnke, Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation: medium development and culture techniques, Bioresour. Technol., 190, 114-121 (2015). https://doi.org/10.1016/j.biortech.2015.04.043
  14. S. J. Kwon, J. Lee, and H. S. Lee, Acetate-assisted carbon monoxide fermentation of Clostridium sp. AWRP, Process Biochem., 113, 47-54 (2022). https://doi.org/10.1016/j.procbio.2021.12.015
  15. H. Im, T. An, R. Kwon, S. Park, and Y.-K. Kim, Effect of organic nitrogen supplement on syngas fermentation using Clostridium autoethanogenum, Biotechnol. Bioprocess Eng., 26, 476-482 (2021). https://doi.org/10.1007/s12257-020-0221-4
  16. T. An and Y.-K. Kim, Effect of selenium and tungsten on cell growth and metabolite production in syngas fermentation using "Clostridium autoethanogenum", J. Biotechnol., 356, 60-64 (2022). https://doi.org/10.1016/j.jbiotec.2022.07.004
  17. H. N., Abubackar, M. C. Veiga, and C. Kennes, Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid, Bioresour. Technol., 186, 122-127 (2015). https://doi.org/10.1016/j.biortech.2015.02.113
  18. F. Ammam, P. L. Tremblay, D. M. Lizak, and T. Zhang, Effect of tungstate on acetate and ethanol production by the electrosynthetic bacterium Sporomusa ovata, Biotechnol. Biofuels, 9, 163 (2016).