DOI QR코드

DOI QR Code

Nanocellulose-based Polymer Composites with Their Properties and Applications

나노셀룰로오스 기반 고분자 복합소재의 특성 및 응용

  • Se Hun Kim (Department of Industrial Chemistry, Pukyung National University) ;
  • Young Jae Kwon (Department of Industrial Chemistry, Pukyung National University) ;
  • Yamini Sharma (Department of Industrial Chemistry, Pukyung National University) ;
  • MinYoung Shon (Department of Industrial Chemistry, Pukyung National University) ;
  • Sangho Cho (Materials Architecturing Research Center, Korea Institute of Science and Technology) ;
  • Kyung-Youl Baek (Materials Architecturing Research Center, Korea Institute of Science and Technology) ;
  • Kie Yong Cho (Department of Industrial Chemistry, Pukyung National University)
  • 김세훈 (부경대학교 공업화학과) ;
  • 권영제 (부경대학교 공업화학과) ;
  • 야미니 샬마 (부경대학교 공업화학과) ;
  • 손민영 (부경대학교 공업화학과) ;
  • 조상호 (한국과학기술연구원 물질구조제어연구단) ;
  • 백경열 (한국과학기술연구원 물질구조제어연구단) ;
  • 조계용 (부경대학교 공업화학과)
  • Received : 2023.03.28
  • Accepted : 2023.05.02
  • Published : 2023.06.10

Abstract

Celluloses are naturally occurring polymers that can be easily obtained from various natural sources. Nanocellulose, a form of cellulose, can be derived from regular cellulose and has unique properties that make it ideal for multiple industrial applications. Nanocellulose is a renewable, sustainable, and eco-friendly composite material with exceptional mechanical properties and thermal stability, surpassing metal and ceramic composites. As a result, nanocelluloses are being extensively studied for their potential applications, including fillers, packaging, energy, medicine, and coatings. This review aims to summarize the current research on nanocelluloses and their applications.

셀룰로오스는 자연의 다양한 공급원에서 쉽게 얻을 수 있는 가장 일반적인 천연 고분자이다. 셀룰로오스의 한 형태인 나노셀룰로오스는 셀룰로오스를 처리해 쉽게 얻을 수 있으며, 그 고유 물성이 상당히 우수하여 광범위한 산업 응용 분야에 사용이 가능하다. 이러한 나노 셀룰로오스는 금속 및 세라믹 필러를 포함하는 고분자 복합재료를 능가하는 뛰어난 기계적 물성 및 열적 안정성을 제공하며, 지속가능한 환경 친화적인 복합소재이다. 이러한 특성을 기반으로 필러, 포장지, 에너지, 의료, 코팅산업 등 다양한 분야에서 광범위하게 연구되고 있다. 본 리뷰에서는 나노셀룰로오스 및 나노복합소재 개발 그리고 응용분야에 대한 연구동향에 대해 고찰해보았다.

Keywords

Acknowledgement

본 논문은 2023년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원을 받아 수행됨(과제번호: 200018459, 과제번호: 20008653).

References

  1. M. Rabnawaz, I. Wyman, R. Auras, and S. Cheng, A roadmap towards green packaging : the current status and future outlook for polyesters in the packaging industry, Green Chem., 19, 4737-4353 (2017). 
  2. Editorial Nat. Commun., 9, 2157 (2018). 
  3. K. Lee, Y. Aitomaki, L. A. Berglund, K. Oksman, and A. Bismarck, On the use of nanocellulose as reinforcement in polymer matrix composite, Compos. Sci. Technol., 105, 15-27 (2014).  https://doi.org/10.1016/j.compscitech.2014.08.032
  4. T. Hassan, A. Salam, A. Khan, S. U. Khan, H. Khanzada, M. Wasim, M. Q. Khan, and I. S. Kim, Functional nanocomposites and their potential application : A review, J. Polym. Res., 28, 1-22 (2021).  https://doi.org/10.1007/s10965-020-02155-9
  5. P. Phanthong, P. Reubroycharoen, X. Hao, G. Xu, A. Abudula, and G. Guan, Nanocellulose : Extraction and application, Carbon Resour. Convers., 1, 32-43 (2018).  https://doi.org/10.1016/j.crcon.2018.05.004
  6. R. J. Moon, A. Martini, J. Nairn, J. Simonsen, and J. Youngblood, Cellulose nanomaterials review : Structure, properties and nanocomposites, Chem. Soc. Rev. 40, 3941-3994 (2011).  https://doi.org/10.1039/c0cs00108b
  7. A. Ferrer, L. Pal, and M. Hubbe, Nanocellulose in Packaging : Advances in barrier layer technology, Ind. Crops. Prod., 95, 574-582 (2017).  https://doi.org/10.1016/j.indcrop.2016.11.012
  8. P. Dhar, U. Bhardwaj, A. Kumar, and V. Katiyar, Poly (3-hydroxybutyrate)/cellulose nanocrystal films for food packaging applications: Barrier and migration studies, Polym. Eng. Sci., 55, 2388-2395 (2015).  https://doi.org/10.1002/pen.24127
  9. A. N. Nakagaito, M. Nogi, and H. Yano, Displays from transparent films of natural nanofibers, MRS Bull., 37, 7683-7687 (2004). 
  10. W. Chen, H Yu, Y Liu, P Chen, M. Zhang, and Y. Hai, Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments, Carbohydr. Polym., 83, 1804-1811 (2011).  https://doi.org/10.1016/j.carbpol.2010.10.040
  11. X. Kang, S. Kuga, C. Wang, Y. Zhoa, M. Wu, and Y. Huang, Green preparation of cellulose nanocrystal and its application, ACS Sustain. Chem. Eng., 6, 2954-2960 (2018). 
  12. W. Liu, H. Du, K. Liu, H. Liu, H. Xie, X. Si, B. Pang, and X. Zhang, Sustainable preparation of cellulose nanofibrils via choline chloride-citric acid deep eutectic solvent pretreatment combined with high-pressure homogenization, Carbohydr. Polym., 267, 118220 (2021). 
  13. D. Lv, H. Du, X. Che, M. Wu, Y. Zhang, C. Liu, S. Nie, X. Zhang, and B. Lin, Tailored and integrated production of functional cellulose nanocrystals and cellulose nanofibrils via sustainable formic acid hydrolysis: kinetic study and characterization, ACS Sustain. Chem. Eng., 7, 9449-9463 (2019).  https://doi.org/10.1021/acssuschemeng.9b00714
  14. Y. H. Feng, T. Y. Cheng, W. G. Yang, P. T. Ma, H. Z. He, X. C. Yin, and X. X. Yu, Characteristics and environmentally friendly extraction of cellulose nanofibrils from sugarcane bagasse, Ind. Crops. Prod., 111, 285-291 (2018).  https://doi.org/10.1016/j.indcrop.2017.10.041
  15. J. Mao, B. Heck, G. Reite, and M. P. Laborie, Cellulose nanocrystals'production in near theoretical yields by 1-butyl-3-methylimidazolium hydrogen sulfate ([Bmim]HSO4) - mediated hydrolysis, Carbohydr. Polym., 117, 443-451 (2015).  https://doi.org/10.1016/j.carbpol.2014.10.001
  16. J. H. Kim and B. S. Shim, Review of nanocellulose for sustainable future materials, Int. J. Precis. Eng. Manuf., 2, 197-213 (2015). 
  17. S. Ummartyotin, J. Juntaro, M. Sain, and H. Manuspiya. Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display, Ind. Crops. Prod., 35, 92-97 (2012).  https://doi.org/10.1016/j.indcrop.2011.06.025
  18. K. B. R. Teodoro and R. C. Sanfelice, A review on the role and performance of cellulose nanomaterials in sensors, ACS Sens., 6, 2473-2496 (2021).  https://doi.org/10.1021/acssensors.1c00473
  19. Z. Wang, Y. Lee, S, Kim, J. Seo, S. Lee, and L. Nyholm, Why cellulose-based electrochemical energy storage devices?, Adv. Mater., 33, 20000892 (2021). 
  20. S. Nie, N. Hao, K. Zhang, C. Xing, and S. Wang, Cellulose nanofibrils-based thermally conductive composites for flexible electronics : A mini review, Cellulose, 27, 4173-4187 (2020).  https://doi.org/10.1007/s10570-020-03103-y
  21. S. Kalia, A. Dufresne, B. M. Cherian, B. S. Kaith, L. Averous, J. Njuguna, and E. Nassiopoulos, Cellulose-based bio-and nanocomposite: A review, Int. J. Polym. Sci., 2011, 837878 (2011). 
  22. A. B. Seabra, J. S. Bernardes, W. J. Favaro. A. J. Paula, and N. Duran, Cellulose nanocrystals as carriers in medicine and their toxicities: A review, Carbpol., 181, 514-527 (2018). 
  23. U. G. T. M. Sampath, Y. C. Ching, C. H. Chuah, R. Singh and P. Lin, Preparation and characterization of nanocellulose reinforced semi-interpenetrating polymer network of chitosan hydrogel, Cellulose, 24, 2215-2228 (2017).  https://doi.org/10.1007/s10570-017-1251-8
  24. C .V. Garcia, G. H, Shin, and J. T. Kim, Metal oxide-based nanocomposites in food packaging: Applications, migration, and regulations, Trends Food Sci. Technol., 82., 21-31 (2018).  https://doi.org/10.1016/j.tifs.2018.09.021
  25. S. S Nair, J. Y. Zhu, Y. Deng, and A. J. Ragauskas, High performance green barriers based on nanocellulose, Sustain. Chem. Process., 2, 1-7 (2014).  https://doi.org/10.1186/2043-7129-2-1
  26. J. Trifol, D. Plackett, C. Sillard, P. Szabo, J. Bras, and A. E. Daugaard, Hybrid poly(lactic acid)/nanocellulose/nanoclay composites with synergistically enhanced barrier properties and improved thermomechanical resistance, Polym. Int., 65, 988-995 (2016). https://doi.org/10.1002/pi.5154
  27. J. Trifol, D. C. M. Quintero and R. moriana, Pine Cone Biorefinery, Integral alorization of residual biomass into lignocellulose nanofibrils (LCNF)-Reinforced composites for packaging, ACS Sustain. Chem. Eng., 9, 2180-2190 (2021).  https://doi.org/10.1021/acssuschemeng.0c07687
  28. C. Amara, A. E. Mahdi, R. Medimagh, and K. khwaldia, Nanocellulose-based composites for packaging applications, Curr. Opin. Green Sustain. Chem., 31, 100512 (2021). 
  29. H. Soeta, S. Fujisawa, T. Saito, and A. Isogai , Interfacial layer thickness design for exploiting the reinforcement potential of nanocellulose in cellulose triacetate matrix, Compos. Sci. Technol., 147, 100-106 (2017).  https://doi.org/10.1016/j.compscitech.2017.05.010
  30. S. Fujisawa, E. Togawa, and K Kuroda, Facile route to transparent, strong, and thermally stabble nanocellulose/polymer nanocomposites from an aqueous pickering emulsion, Biomacromolecules, 18, 266-271 (2017).  https://doi.org/10.1021/acs.biomac.6b01615
  31. N. Hasan, D. R. A. biak, and S. Kumarudin, Application of bacterial cellulose (BC) in natural facial scrub, Int. J. Adv. Sci. Eng. Inf. Technol., 2, 2088-5334 (2012). 
  32. H. Ullah, H. A. Santos, and T. Khan, Applications of bacterial cellulose in food, cosmetics and drug delivery, Cellulose, 23, 2291-2314 (2016). https://doi.org/10.1007/s10570-016-0986-y