DOI QR코드

DOI QR Code

A Study on How to Minimize the Luminance Deviation of AC-LED Lighting

교류 LED 조명의 빛 밝기 편차를 최소화하는 방법에 대한 연구

  • Dong Won Lee (Shin-il Technology) ;
  • Bong Hee Lee (Department of Steel Industry, Pohang University) ;
  • Byungcheul Kim (Department of Convergence Electronic Engineering, Gyeongsang National University)
  • Received : 2023.02.01
  • Accepted : 2023.02.22
  • Published : 2023.05.01

Abstract

In order to spread LED lighting, LED lighting technology directly driven by alternating current (AC) commercial power has recently been introduced. Since current does not flow at a voltage lower than the threshold voltage of the LED, a non-conductive section occurs in the current waveform, and the higher the threshold voltage of the LED, the more discontinuous current waveforms are generated. In this paper, multi-LED modules are connected in series so that the threshold voltage can be adjusted according to the number of LED modules. A small number of LED modules are driven at a low instantaneous rectified voltage, and a large number of LED modules are driven at a high instantaneous rectified voltage to lengthen the overall lighting time of AC-LED lighting, thereby minimizing the luminance deviation of AC-LED lighting. In addition, the load current flowing through the LED module is adjusted to be the same as the design current even at the maximum rectified voltage higher than the design voltage, so that the light brightness of the LED module is kept constant. Therefore, even if the rectified voltage applied to the LED module changes, the AC-LED lighting in which the light brightness is constant and the luminance deviation is minimal has been realized.

Keywords

References

  1. S. C. Sakong, H. S. Park, J. I. Kang, and S. K. Han, Trans. Korean Inst. Power Electron., 19, 91 (2014). [DOI: https://doi.org/10.6113/TKPE.2014.19.1.91]
  2. H. Y. Shin, J. Korean Inst. Electron. Commun. Sci., 10, 111 (2015). [DOI: https://doi.org/10.13067/JKIECS.2015.10.1.111]
  3. G. Y. Jeong, J. Inst. Korean Electr. Electron. Eng., 22, 767 (2018). [DOI: https://doi.org/10.7471/ikeee.2018.22.3.767]
  4. D. S. Park, T. K. Kim, and S. C. Oh, J. Korea Acad. Ind. Coop. Soc., 20, 491 (2019). [DOI: https://doi.org/10.5762/KAIS.2019.20.3.491]
  5. R. Dayal, K. Modepalli, and L. Parsa, Proc. 2012 IEEE Energy Conversion Congress and Exposition (ECCE) (IEEE, Raleigh, USA, 2012) p. 4230. [DOI: https://doi.org/10.1109/ECCE.2012.6342248]
  6. J. P. Ao, H. Sato, T. Mizobuchi, K. Morioka, S. Kawano, Y. Muramoto, Y. B. Lee, D. Sato, Y. Ohno, and S. Sakai, Phys. Status Solidi A, 194, 376 (2002). [DOI: https://doi.org/10.1002/1521-396X(200212)194:2<376::AID-PSSA376>3.0.CO;2-3]
  7. G. A. Onushkin, Y. J. Lee, J. J. Yang, H. K. Kim, J. K. Son, G. H. Park, and Y. J. Park, IEEE Photonics Technol. Lett., 21, 33 (2009). [DOI: https://doi.org/10.1109/LPT.2008.2008204]
  8. J. Cho, J. Jung, J. H. Chae, H. Kim, H. Kim, J. W. Lee, S. Yoon, C. Sone, T. Jang, Y. Park, and E. Yoon, Jpn. J. Appl. Phys., 46, L1194 (2007). [DOI: https://doi.org/10.1143/JJAP.46.L1194]
  9. K. I. Hwu and W. C. Tu, IEEE Trans. Ind. Inf., 9, 1330 (2013). [DOI: https://doi.org/10.1109/TII.2012.2226042]
  10. K. Seo, V. H. Nguyen, J. Jung, J. Park, and H. Song, Inst. Electron., Inf. Commun. Eng., Electron. Express, 11, 20140810 (2014). [DOI: https://doi.org/10.1587/elex.11.20140810]
  11. J. Kim and S. Park, J. Semicond. Technol. Sci., 15, 390 (2015). [DOI: https://doi.org/10.5573/JSTS.2015.15.3.390]
  12. Y. Gao, L. Li, and P.K.T. Mok, IEEE J. Solid-State Circuits, 52, 1424 (2017). [DOI: https://doi.org/10.1109/JSSC.2017.2656147]
  13. Y. Yoon, J. Inst. Internet Broadcast. Commun., 20, 205 (2020). [DOI: https://doi.org/10.7236/JIIBC.2020.20.1.205]
  14. D. W. Lee, H. M. An, and B. Kim, J. Nanoelectron. Optoelectron., 10, 234 (2015). [DOI: https://doi.org/10.1166/jno.2015.1737]
  15. D. W. Lee, H. M. Ahn, and B. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 35, 466 (2022). [DOI: https://doi.org/10.4313/JKEM.2022.35.5.7]