DOI QR코드

DOI QR Code

태양광 리본용 저융점 Sn-In (wt%) 무연 솔더 연구

A Study on Low-Melting Temperature Sn-In (wt%) Pb-Free Solders for Photovoltaic Ribbons

  • 신동현 (경북대학교 나노소재공학부) ;
  • 이승한 (경북대학교 나노소재공학부) ;
  • 조태식 (경북대학교 나노소재공학부) ;
  • 김일섭 ((주)산코코리아 개발팀)
  • Dong-Hyeon Shin (Department of Nano Materials Engineering, Kyungpook National University) ;
  • Seung-Han Lee (Department of Nano Materials Engineering, Kyungpook National University) ;
  • Tae-Sik Cho (Department of Nano Materials Engineering, Kyungpook National University) ;
  • Il-Sub Kim (Development Team, Sanko Korea Co.)
  • 투고 : 2023.01.07
  • 심사 : 2023.01.17
  • 발행 : 2023.03.01

초록

We studied the various characteristics of Sn-In (wt%) Pb-free solders for photovoltaic ribbon application. The solders near the eutectic composition of Sn48In52 (wt%) existed in InSn4 and In3Sn alloy phases, and in In crystal phase, but not in Sn crystal phase. In addition, the InSn4 phase (γ-alloy) existed separately from the In3Sn (β-alloy) and the In phase confirmed by an SEM-EDS-mapping. The melting temperature of the eutectic solder of Sn48In52 (wt%) was 119.2℃, and when the Sn content decreased in reference to the eutectic composition, it slightly increased to 121.4℃, but when the Sn content increased, it remained almost constant at 119.1℃. The peel strength of the ribbon plated with the Sn42In58 (wt%) solder was 38.7 N/mm2, and it tended to increase when the Sn content increased. The peel strength of the eutectic Sn48In52 (wt%) solder was 53.6 N/mm2, and that of the Sn51In49 (wt%) solder was 61.6 N/mm2 that was the highest.

키워드

과제정보

본 연구는 '산업통상자원부'의 '신재생에너지 핵심기술개발사업'으로 (주) 산코코리아와 공동으로 수행된 연구 결과이다. 저자들은 SEM-EDS와 XRD 실험에 도움을 준 한국기초과학지원연구원(대구센터) 황기주 선생과 이상걸 박사께 감사드린다.

참고문헌

  1. J. M. Pearce, Futures, 34, 663 (2002). [DOI: https://doi.org/10.1016/S0016-3287(02)00008-3]
  2. A. Rose, Phys. Status Solidi A, 56, 11 (1979). [DOI: https://doi.org/10.1002/pssa.2210560102]
  3. T. S. Cho, M. S. Chae, and C. S. Cho, Trans. Electr. Electron. Mater., 15, 217 (2014). [DOI: https://doi.org/10.4313/TEEM.2014.15.4.217]
  4. T. S. Cho and C. S. Cho, Trans. Electr. Electron. Mater., 16, 20 (2015). [DOI: https://doi.org/10.4313/TEEM.2015.16.1.20]
  5. J. S. Jeong, N. Park, and C. Han, Microelectron. Reliab., 52, 2326 (2012). [DOI: https://doi.org/10.1016/j.microrel.2012.06.027]
  6. J. Wendt, M. Trager, R. Klengel, M. Petzold, D. Schade, and R. Sykes, Proc. 2010 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (IEEE, Las Vegas, USA, 2010) p. 1. [DOI: https://doi.org/10.1109/ITHERM.2010.5501299]
  7. Y. S. Son and T. S. Cho, J. Korean Inst. Electr. Electron. Mater. Eng., 28, 332 (2015). [DOI: https://doi.org/10.4313/JKEM.2015.28.5.332]
  8. J. H. Jeong and T. S. Cho, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 119 (2017). [DOI: https://doi.org/10.4313/JKEM.2017.30.2.119]
  9. F. Guo, S. Choi, J. P. Lucas, and K. N. Subramanian, Soldering Surf. Mount Technol., 13, 7 (2001). [DOI: https://doi.org/10.1108/09540910110361668]
  10. W. B. Hampshire, Soldering Surf. Mount Technol., 5, 49 (1993). [DOI: https://doi.org/10.1108/eb037826]
  11. C. Y. Liu, C. Chen, and K. N. Tu, J. Appl. Phys., 88, 5703 (2000). [DOI: https://doi.org/10.1063/1.1319327]
  12. J. H. Lee, Y. H. Lee, and Y. S. Kim, Scripta Mater., 42, 789 (2000). [DOI: https://doi.org/10.1016/S1359-6462(99)00431-5]
  13. I.K.A. Qader and Y. B. Zainuddin, Int. J. Bus. Manage., 6, 240 (2011). [DOI: https://doi.org/10.5539/ijbm.v6n3p240]
  14. J. S. Jeong, C. M. Oh, G. Y. Goo, Y. H. Yoon, U. H. Hwang, and W. S. Hong, J. Weld. Joining, 29, 11 (2011). [DOI: https://doi.org/10.5781/KWJS.2011.29.4.373]
  15. Y. Liu and K. N. Tu, Mater. Today Adv., 8, 100115 (2020). [DOI: https://doi.org/10.1016/j.mtadv.2020.100115]
  16. Y. Shu, K. Rajathurai, F. Gao, Q. Cui, and Z. Gu, J. Alloys Compd., 626, 391 (2015). [DOI: https://doi.org/10.1016/j.jallcom.2014.11.173]
  17. H. Deng, K. Wang, Y. Duan, W. Zhang, and J. Hu, Coatings, 12, 429 (2022). [DOI: https://doi.org/10.3390/coatings12040429]
  18. J. F. Li, S. H. Mannan, M. P. Clode, D. C. Whalley, and D. A. Hutt, Acta Mater., 54, 2907 (2006). [DOI: https://doi.org/10.1016/j.actamat.2006.02.030]
  19. J. W. Yoon, C. B. Lee, and S. B. Jung, Mater. Trans., 43, 1821 (2002). [DOI: https://doi.org/10.2320/matertrans.43.1821]
  20. J. Gong, C. Liu, P. P. Conway, and V. V. Silberschmidt, Mater. Sci. Eng. A, 427, 60 (2006). [DOI: https://doi.org/10.1016/j.msea.2006.04.034]
  21. L. R. Garcia, W. R. Osόrio, and A. Garcia, Mater. Des., 32, 3008 (2011). [DOI: https://doi.org/10.1016/j.matdes.2010.12.046]
  22. R. A. Islam, Y. C. Chan, W. Jillek, and S. Islam, Microelectro. J., 37, 705 (2006). [DOI: http://doi.org/10.1016/j.mejo.2005.12.010]
  23. L. R. Garcia, W. R. Osόrio, L. C. Peixoto, and A. Garcia, Mater. Charact., 61, 212 (2010). [DOI: https://doi.org/10.1016/j.matchar.2009.11.012]
  24. H. Yousuf, M. Q. Khokhar, S. Chowdhury, D. P. Pham, Y. Kim, M. Ju, Y. Cho, E. C. Cho, and J. Yi, Curr. Photovoltaic Res., 9, 75 (2021). [DOI: https://doi.org/10.21218/CPR.2021.9.3.075]
  25. J. Glazer, J. Electron. Mater., 23, 693 (1994). [DOI: https://doi.org/10.1007/BF02651361]
  26. R. Kubiak, M. Wolcyrz, and W. Zacharko, J. Less-Common Met., 65, 263 (1979). [DOI: https://doi.org/10.1016/0022-5088(79)90116-4]
  27. Z. Mei and J. W. Morris, J. Electron. Mater., 21, 401 (1992). [DOI: https://doi.org/10.1007/BF02660403]
  28. D. F. Susan, J. A. Rejent, P. F. Hlava, and P. T. Vianco, J. Mater. Sci., 44, 545 (2009). [DOI: https://doi.org/10.1007/s10853-008-3083-2]