DOI QR코드

DOI QR Code

Modeling, analysis and experimental verification of two non-electrolytic capacitor Z-source converters

  • Guidong Zhang (School of Automation, Guangdong University of Technology) ;
  • Zexiang Chen (School of Automation, Guangdong University of Technology) ;
  • Samson S. Yu (School of Engineering, Deakin University)
  • Received : 2022.06.20
  • Accepted : 2022.10.13
  • Published : 2023.03.20

Abstract

This paper gives a detailed theoretical analysis of two popular non-electrolytic capacitor NEC-Z-source converters (NEC-ZSCs) including analyses of their operation, the voltage stresses of the capacitors and diodes, the current stresses of the inductors, the voltage and current stresses of the switches, and the voltage gain with and without considering parasitic parameters. Parameter design and small signal modeling of NEC-ZSCs are conducted, and a proportional-integral (PI) controller is designed to form the closed-loop control circuit. Simulations and experiments are conducted and their results are collected and analyzed. These results corroborate the feasibility and effectiveness of the theoretical analysis for the two NEC-ZSCs and the closed-loop control design.

Keywords

Acknowledgement

The work is supported by the Foundation of Key Laboratory of System Control and Information Processing, Ministry of Education, P.R. China under granted No. AF0300354.

References

  1. Liu, J., Tian, H., Liang, G., et al.: A bridgeless electrolytic capacitor-free LED driver based on series-resonant converter with constant frequency control. IEEE Trans. Power Electron. 34(3), 2712-2725 (2018) https://doi.org/10.1109/TPEL.2018.2847701
  2. Zhou, X., Xu, D., Wang, Y., Wang, L., Liu, Y.-F., Sen, P.C.: An electrolytic capacitor-free half bridge class-D audio amplifier system without bus-voltage pumping. IEEE Trans. Power Electron. 36(8), 9221-9236 (2021). https://doi.org/10.1109/TPEL.2021.3049596
  3. Galigekere, V.P.: Analysis of PWM Z-source DC-DC converter in CCM for steady state. IEEE Trans. Circuits Syst. I Regul. Pap. 59(4), 854-863 (2012) https://doi.org/10.1109/TCSI.2011.2169742
  4. Miranda, P.H.A., Sa, E.M., Rodrigues, F.W.G., Antunes, F.L.M.: Single-stage three-phase AC-DC resonant switched capacitor LED driver without electrolytic capacitor and reduced number of controlled switches. IEEE Trans. Circuits Syst. I Regul. Pap. 67(12), 5675-5686 (2020). https://doi.org/10.1109/TCSI.2020.3017412
  5. Ghadrdan, M., Peyghami, S., Mokhtari, H., Blaabjerg, F.: Condition monitoring of DC-link electrolytic capacitor in back-to-back converters based on dissipation factor. IEEE Trans. Power Electron. 37(8), 9733-9744 (2022). https://doi.org/10.1109/TPEL.2022.3153842
  6. Fang, P., Sam, W., Liu, Y.F., et al.: Single-stage led driver achieves electrolytic capacitor-less and flicker-free operation with unidirectional current compensator. IEEE Trans. Power Electron. 34, 6760-6776 (2018) https://doi.org/10.1109/TPEL.2018.2874999
  7. Schnack, J., Bruckner, S., Suncksen, H., Schumann, U., Mallwitz, R.: Analysis and optimization of electrolytic capacitor technology for high-frequency integrated inverter. IEEE Trans. Compon. Packag. Manuf. Technol. 11(6), 999-1011 (2021). https://doi.org/10.1109/TCPMT.2021.3084371
  8. Ma, H., Lai, J.S., Cong, Z., et al.: A high-effciency quasi-single-stage bridgeless electrolytic capacitor-free high-power AC-DC driver for supplying multiple LED strings in parallel. IEEE Trans. Power Electron. 31(8), 5825-5836 (2016) https://doi.org/10.1109/TPEL.2015.2490161
  9. Laadjal, K., Sahraoui, M., Cardoso, A.J.M.: On-line fault diagnosis of DC-link electrolytic capacitors in boost converters using the STFT technique. IEEE Trans. Power Electron. 36(6), 6303-6312 (2021). https://doi.org/10.1109/TPEL.2020.3040499
  10. Zhang, G., Zheng, P., Yu, S., et al.: Controllability analysis and verification for high-order DC-DC converters using switched linear systems theory. IEEE Trans. Power Electron. PP(99), 1-1
  11. Li, J., Liu, X., Xu, M., Fang, Y.: Continuous higher-order sliding mode control for a class of n-th order perturbed systems. IEEE Trans. Circuits Syst. II Express Briefs 69(7), 3179-3183 (2022). https://doi.org/10.1109/TCSII.2022.3162611
  12. Joshi, A., Mishra, S., et al.: A passive filter building block for input or output current ripple cancellation in a power converter. IEEE J Emerg Select Top Power Electron 4, 564-575 (2016) https://doi.org/10.1109/JESTPE.2015.2496146
  13. Meng, Q., Ma, Q., Shi, Y.: Fixed-time stabilization for nonlinear systems with low-order and high-order nonlinearities via event-triggered control. IEEE Trans. Circuits Syst. I Regul. Pap. 69(7), 3006-3015 (2022). https://doi.org/10.1109/TCSI.2022.3164552
  14. Zhang, G., Chen, W., Yu, S., et al.: Replacing all ECs with NECs in step-up converters-a systematic approach. IEEE Trans. Power Electron. PP(99), 1-1
  15. Zhang, G., Zheng, P., Yu, S.S., Trinh, H., Li, Z.: A parameter-averaging approach to converter system order reduction. Electr. Eng. 103(4), 2021-2034 (2021)  https://doi.org/10.1007/s00202-020-01212-2