Acknowledgement
The work is supported by the Foundation of Key Laboratory of System Control and Information Processing, Ministry of Education, P.R. China under granted No. AF0300354.
References
- Liu, J., Tian, H., Liang, G., et al.: A bridgeless electrolytic capacitor-free LED driver based on series-resonant converter with constant frequency control. IEEE Trans. Power Electron. 34(3), 2712-2725 (2018) https://doi.org/10.1109/TPEL.2018.2847701
- Zhou, X., Xu, D., Wang, Y., Wang, L., Liu, Y.-F., Sen, P.C.: An electrolytic capacitor-free half bridge class-D audio amplifier system without bus-voltage pumping. IEEE Trans. Power Electron. 36(8), 9221-9236 (2021). https://doi.org/10.1109/TPEL.2021.3049596
- Galigekere, V.P.: Analysis of PWM Z-source DC-DC converter in CCM for steady state. IEEE Trans. Circuits Syst. I Regul. Pap. 59(4), 854-863 (2012) https://doi.org/10.1109/TCSI.2011.2169742
- Miranda, P.H.A., Sa, E.M., Rodrigues, F.W.G., Antunes, F.L.M.: Single-stage three-phase AC-DC resonant switched capacitor LED driver without electrolytic capacitor and reduced number of controlled switches. IEEE Trans. Circuits Syst. I Regul. Pap. 67(12), 5675-5686 (2020). https://doi.org/10.1109/TCSI.2020.3017412
- Ghadrdan, M., Peyghami, S., Mokhtari, H., Blaabjerg, F.: Condition monitoring of DC-link electrolytic capacitor in back-to-back converters based on dissipation factor. IEEE Trans. Power Electron. 37(8), 9733-9744 (2022). https://doi.org/10.1109/TPEL.2022.3153842
- Fang, P., Sam, W., Liu, Y.F., et al.: Single-stage led driver achieves electrolytic capacitor-less and flicker-free operation with unidirectional current compensator. IEEE Trans. Power Electron. 34, 6760-6776 (2018) https://doi.org/10.1109/TPEL.2018.2874999
- Schnack, J., Bruckner, S., Suncksen, H., Schumann, U., Mallwitz, R.: Analysis and optimization of electrolytic capacitor technology for high-frequency integrated inverter. IEEE Trans. Compon. Packag. Manuf. Technol. 11(6), 999-1011 (2021). https://doi.org/10.1109/TCPMT.2021.3084371
- Ma, H., Lai, J.S., Cong, Z., et al.: A high-effciency quasi-single-stage bridgeless electrolytic capacitor-free high-power AC-DC driver for supplying multiple LED strings in parallel. IEEE Trans. Power Electron. 31(8), 5825-5836 (2016) https://doi.org/10.1109/TPEL.2015.2490161
- Laadjal, K., Sahraoui, M., Cardoso, A.J.M.: On-line fault diagnosis of DC-link electrolytic capacitors in boost converters using the STFT technique. IEEE Trans. Power Electron. 36(6), 6303-6312 (2021). https://doi.org/10.1109/TPEL.2020.3040499
- Zhang, G., Zheng, P., Yu, S., et al.: Controllability analysis and verification for high-order DC-DC converters using switched linear systems theory. IEEE Trans. Power Electron. PP(99), 1-1
- Li, J., Liu, X., Xu, M., Fang, Y.: Continuous higher-order sliding mode control for a class of n-th order perturbed systems. IEEE Trans. Circuits Syst. II Express Briefs 69(7), 3179-3183 (2022). https://doi.org/10.1109/TCSII.2022.3162611
- Joshi, A., Mishra, S., et al.: A passive filter building block for input or output current ripple cancellation in a power converter. IEEE J Emerg Select Top Power Electron 4, 564-575 (2016) https://doi.org/10.1109/JESTPE.2015.2496146
- Meng, Q., Ma, Q., Shi, Y.: Fixed-time stabilization for nonlinear systems with low-order and high-order nonlinearities via event-triggered control. IEEE Trans. Circuits Syst. I Regul. Pap. 69(7), 3006-3015 (2022). https://doi.org/10.1109/TCSI.2022.3164552
- Zhang, G., Chen, W., Yu, S., et al.: Replacing all ECs with NECs in step-up converters-a systematic approach. IEEE Trans. Power Electron. PP(99), 1-1
- Zhang, G., Zheng, P., Yu, S.S., Trinh, H., Li, Z.: A parameter-averaging approach to converter system order reduction. Electr. Eng. 103(4), 2021-2034 (2021) https://doi.org/10.1007/s00202-020-01212-2