DOI QR코드

DOI QR Code

Calcium/calmodulin-dependent protein kinase II is involved in the transmission and regulation of nociception in naïve and morphine-tolerant rat nucleus accumbens

  • Kai Wen Xi (Department of Physiology, Faculty of Basic Medical Science, Kunming Medical University) ;
  • De Duo Chen (Department of Physiology, Faculty of Basic Medical Science, Kunming Medical University) ;
  • Xin Geng (Second Department of Neurosurgery, The First Affiliated Hospital, Kunming Medical University) ;
  • Yan Bian (Department of Oncology, The Second Affiliated Hospital, Kunming Medical University) ;
  • Min Xin Wang (Department of Physiology, Faculty of Basic Medical Science, Kunming Medical University) ;
  • Hui Bian (Department of Physiology, Faculty of Basic Medical Science, Kunming Medical University)
  • 투고 : 2022.11.04
  • 심사 : 2023.02.19
  • 발행 : 2023.04.01

초록

Background: Synaptic plasticity contributes to nociceptive signal transmission and modulation, with calcium/calmodulin-dependent protein kinase II (CaMK II) playing a fundamental role in neural plasticity. This research was conducted to investigate the role of CaMK II in the transmission and regulation of nociceptive information within the nucleus accumbens (NAc) of naïve and morphine-tolerant rats. Methods: Randall Selitto and hot-plate tests were utilized to measure the hindpaw withdrawal latencies (HWLs) in response to noxious mechanical and thermal stimuli. To induce chronic morphine tolerance, rats received intraperitoneal morphine injection twice per day for seven days. CaMK II expression and activity were assessed using western blotting. Results: Intra-NAc microinjection of autocamtide-2-related inhibitory peptide (AIP) induced an increase in HWLs in naïve rats in response to noxious thermal and mechanical stimuli. Moreover, the expression of the phosphorylated CaMK II (p-CaMK II) was significantly decreased as determined by western blotting. Chronic intraperitoneal injection of morphine resulted in significant morphine tolerance in rats on Day 7, and an increase of p-CaMK II expression in NAc in morphine-tolerant rats was observed. Furthermore, intra-NAc administration of AIP elicited significant antinociceptive responses in morphine-tolerant rats. In addition, compared with naïve rats, AIP induced stronger thermal antinociceptive effects of the same dose in rats exhibiting morphine tolerance. Conclusions: This study shows that CaMK II in the NAc is involved in the transmission and regulation of nociception in naïve and morphine-tolerant rats.

키워드

과제정보

This study was supported by the National Natural Science Foundation of China (No: 81760212).

참고문헌

  1. Harris HN, Peng YB. Evidence and explanation for the involvement of the nucleus accumbens in pain processing. Neural Regen Res 2020; 15: 597-605. https://doi.org/10.4103/1673-5374.266909
  2. Zhou YQ, Liu DQ, Chen SP, Sun J, Zhou XR, Luo F, et al. Cellular and molecular mechanisms of calcium/calmodulin-dependent protein kinase II in chronic pain. J Pharmacol Exp Ther 2017; 363: 176-83. https://doi.org/10.1124/jpet.117.243048
  3. Kim MJ, Kim JY, Lim YH, Hong SJ, Jeong JH, Choi HR, et al. Actual situation and prescribing patterns of opioids by pain physicians in South Korea. Korean J Pain 2022; 35: 475-87. https://doi.org/10.3344/kjp.2022.35.4.475
  4. Mackey S, Kao MC. Managing twin crises in chronic pain and prescription opioids. BMJ 2019; 364: l917.
  5. Wang ZJ, Wang LX. Phosphorylation: a molecular switch in opioid tolerance. Life Sci 2006; 79: 1681-91. https://doi.org/10.1016/j.lfs.2006.05.023
  6. Zhang TJ, Qiu Y, Hua Z. The emerging perspective of morphine tolerance: microRNAs. Pain Res Manag 2019; 2019: 9432965.
  7. Kronschlager MT, Drdla-Schutting R, Gassner M, Honsek SD, Teuchmann HL, Sandkuhler J. Gliogenic LTP spreads widely in nociceptive pathways. Science 2016; 354: 1144-8.
  8. Christie MJ. Cellular neuroadaptations to chronic opioids: tolerance, withdrawal and addiction. Br J Pharmacol 2008; 154: 384-96. https://doi.org/10.1038/bjp.2008.100
  9. Fukushima H, Maeda R, Suzuki R, Suzuki A, Nomoto M, Toyoda H, et al. Upregulation of calcium/ calmodulin-dependent protein kinase IV improves memory formation and rescues memory loss with aging. J Neurosci 2008; 28: 9910-9. https://doi.org/10.1523/JNEUROSCI.2625-08.2008
  10. Yang C, Chen Y, Tang L, Wang ZJ. Haloperidol disrupts opioid-antinociceptive tolerance and physical dependence. J Pharmacol Exp Ther 2011; 338: 164-72. https://doi.org/10.1124/jpet.110.175539
  11. Hu X, Huang F, Szymusiak M, Liu Y, Wang ZJ. Curcumin attenuates opioid tolerance and dependence by inhibiting Ca2+/calmodulin-dependent protein kinase II α activity. J Pharmacol Exp Ther 2015; 352: 420-8. https://doi.org/10.1124/jpet.114.219303
  12. Tang L, Shukla PK, Wang LX, Wang ZJ. Reversal of morphine antinociceptive tolerance and dependence by the acute supraspinal inhibition of Ca(2+)/ calmodulin-dependent protein kinase II. J Pharmacol Exp Ther 2006; 317: 901-9. https://doi.org/10.1124/jpet.105.097733
  13. Tang L, Shukla PK, Wang ZJ. Trifluoperazine, an orally available clinically used drug, disrupts opioid antinociceptive tolerance. Neurosci Lett 2006; 397: 1-4. https://doi.org/10.1016/j.neulet.2005.11.050
  14. Fan GH, Wang LZ, Qiu HC, Ma L, Pei G. Inhibition of calcium/calmodulin-dependent protein kinase II in rat hippocampus attenuates morphine tolerance and dependence. Mol Pharmacol 1999; 56: 39-45. https://doi.org/10.1124/mol.56.1.39
  15. Zhang Y, Gao Y, Li CY, Dong W, Li MN, Liu YN, et al. Galanin plays a role in antinociception via binding to galanin receptors in the nucleus accumbens of rats with neuropathic pain. Neurosci Lett 2019; 706: 93-8. https://doi.org/10.1016/j.neulet.2019.05.016
  16. Xiong W, Yu LC. Involvement of endogenous cholecystokinin in tolerance to morphine antinociception in the nucleus accumbens of rats. Behav Brain Res 2006; 173: 116-21. https://doi.org/10.1016/j.bbr.2006.06.010
  17. Bian H, Yu LC. Intra-nucleus accumbens administration of the calcium/calmodulin-dependent protein kinase II inhibitor KN93 induced antinociception in rats with mononeuropathy. Neurosci Lett 2014; 583: 6-10. https://doi.org/10.1016/j.neulet.2014.09.007
  18. Bian H, Yu LC. Intra-nucleus accumbens administration of the calcium/calmodulin-dependent protein kinase II inhibitor AIP induced antinociception in rats with mononeuropathy. Neurosci Lett 2015; 599: 129-32. https://doi.org/10.1016/j.neulet.2015.05.048
  19. Dong Y, Li CY, Zhang XM, Liu YN, Yang S, Li MN, et al. The activation of galanin receptor 2 plays an antinociceptive effect in nucleus accumbens of rats with neuropathic pain. J Physiol Sci 2021; 71: 6.
  20. Hou KS, Wang LL, Wang HB, Fu FH, Yu LC. Role of calcitonin gene-related peptide in nociceptive modulationin anterior cingulate cortex of naive rats and rats with inflammatory pain. Front Pharmacol 2020; 11: 928.
  21. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 4th ed. Sydney, Academic Press. 1998.
  22. Volkow ND, McLellan AT. Opioid abuse in chronic pain--misconceptions and mitigation strategies. N Engl J Med 2016; 374: 1253-63. https://doi.org/10.1056/NEJMra1507771
  23. Corder G, Tawfik VL, Wang D, Sypek EI, Low SA, Dickinson JR, et al. Loss of μ opioid receptor signaling in nociceptors, but not microglia, abrogates morphine tolerance without disrupting analgesia. Nat Med 2017; 23: 164-73. https://doi.org/10.1038/nm.4262
  24. Calcaterra S, Glanz J, Binswanger IA. National trends in pharmaceutical opioid related overdose deaths compared to other substance related overdose deaths: 1999-2009. Drug Alcohol Depend 2013; 131: 263-70. https://doi.org/10.1016/j.drugalcdep.2012.11.018
  25. Wang ZJ, Tang L, Xin L. Reversal of morphine antinociceptive tolerance by acute spinal inhibition of Ca(2+)/calmodulin-dependent protein kinase II. Eur J Pharmacol 2003; 465: 199-200. https://doi.org/10.1016/S0014-2999(03)01484-5
  26. Liang D, Li X, Clark JD. Increased expression of Ca2+/calmodulin-dependent protein kinase II alpha during chronic morphine exposure. Neuroscience 2004; 123: 769-75. https://doi.org/10.1016/j.neuroscience.2003.10.007
  27. Wang Z, Chabot JG, Quirion R. On the possible role of ERK, p38 and CaMKII in the regulation of CGRP expression in morphine-tolerant rats. Mol Pain 2011; 7: 68.
  28. Wang Z, Ma W, Chabot JG, Quirion R. Calcitonin gene-related peptide as a regulator of neuronal CaMKII-CREB, microglial p38-NFκB and astroglial ERK-Stat1/3 cascades mediating the development of tolerance to morphine-induced analgesia. Pain 2010; 151: 194-205.
  29. Mestek A, Hurley JH, Bye LS, Campbell AD, Chen Y, Tian M, et al. The human mu opioid receptor: modulation of functional desensitization by calcium/ calmodulin-dependent protein kinase and protein kinase C. J Neurosci 1995; 15(3 Pt 2): 2396-406. https://doi.org/10.1523/JNEUROSCI.15-03-02396.1995
  30. Koch T, Kroslak T, Mayer P, Raulf E, Hollt V. Site mutation in the rat mu-opioid receptor demonstrates the involvement of calcium/calmodulin-dependent protein kinase II in agonist-mediated desensitization. J Neurochem 1997; 69: 1767-70. https://doi.org/10.1046/j.1471-4159.1997.69041767.x
  31. Bruggemann I, Schulz S, Wiborny D, Hollt V. Colocalization of the mu-opioid receptor and calcium/ calmodulin-dependent kinase II in distinct painprocessing brain regions. Brain Res Mol Brain Res 2000; 85: 239-50. https://doi.org/10.1016/S0169-328X(00)00265-5
  32. Zhu QM, Wu LX, Zhang B, Dong YP, Sun L. Donepezil prevents morphine tolerance by regulating Nmethyl-d-aspartate receptor, protein kinase C and CaM-dependent kinase II expression in rats. Pharmacol Biochem Behav 2021; 206: 173209.