DOI QR코드

DOI QR Code

Cold-formed austenitic stainless steel SHS brace members under cyclic loading: Finite element modelling, design considerations

  • YongHyun Cho (Sustainable Building Research Center, Hanyang University ERICA) ;
  • Fangying Wang (Department of Civil Engineering, University of Nottingham) ;
  • TaeSoo Kim (School of Architecture and Architectural Engineering, Hanyang University ERICA)
  • Received : 2022.08.30
  • Accepted : 2023.03.27
  • Published : 2023.04.10

Abstract

This study presents a numerical investigation into the hysteretic behavior of cold-formed austenitic stainless steel square hollow section (SHS) brace members using a commercial finite element (FE) analysis software ABAQUS/Standard. The initial/post buckling and fracture life of SHS brace members are comprehensively investigated through parametric studies with FE models incorporating ductile fracture model, which is validated against the existing laboratory test results collected from the literature. It is found that the current predictive models are applicable for the initial buckling strengths of SHS brace members under cyclic loading, while result in significant inaccuracy in predictions for the post-buckling strength and fracture life. The modified predictive model is therefore proposed and the applicability was then confirmed through excellent comparisons with test results for cold-formed austenitic stainless SHS brace members.

Keywords

Acknowledgement

The first author is supported by Basic Science Research through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1I1A1A01059354). The last author is supported by Basic Science Research through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. NRF2018R1D1A1B07046021).

References

  1. ABAQUS (2018), ABAQUS Analysis User's Manual, Dassault Systemes Simulia Corporation, Providence, RI, USA. 
  2. Ahmed, S. and Ashraf, M. (2017), "Numerical investigation on buckling resistance of stainless steel hollow members", J. Constr. Steel Res., 136, 193-203. https://doi.org/10.1016/j.jcsr.2004.06.001. 
  3. AISC ANSI/AISC 341-16 (2016), Seismic Provisions for Structural Steel Buildings, American Institute of Steel Construction, Chicago, IL, USA. 
  4. AISC ANSI/AISC 370-21 (2021), Specification for Structural Stainless Steel Buildings, American Institute of Steel Construction, Chicago, IL, USA. 
  5. AISI (1968), Specification for the Design of Light Gage Cold-Formed Stainless Steel Structural Members, American Iron and Steel Institute; New York, NY, USA. 
  6. Ashraf, M., Gardner, L. and Nethercot, D.A. (2005), "Strength enhancement of the corner regions of stainless steel crosssections", J. Constr. Steel Res., 61(1), 37-52. https://doi.org/10.1016/j.jcsr.2004.06.001. 
  7. Ashraf, M., Gardner, L. and Nethercot, D.A. (2006), "Finite element modelling of structural steel cross-sections", Thin Wall. Struct., 44(10), 1048-1062. https://doi.org/10.1016/j.tws.2006.10.010. 
  8. ASTM E8-16 (2016), Standard Test Methods for Tension Testing of metallic Materials, ASTM International; West Conshohocken, PA, USA. 
  9. ATC-24 (1992), Guidelines for Cyclic Seismic Testing of Components of Steel Structures for Building, Applied Technology Council, Redwood City, CA, USA. 
  10. Chiu, P.K., Weng, K.L., Wang, S.H., Yang, J.R., Huang, Y.S. and Fang, J. (2005), "Low-cycle fatigue-induced martensitic transformation in SAF 220 duplex stainless steel", Mater. Sci. Eng. A., 398(1-2), 349-359. https://doi.org/10.1016/j.msea.2005.03.096. 
  11. Eurocode (2013a), Design of Structures for Earthquake Resistance. Part 1: General Rules. Seismic Actions and Rules for Buildings, European Committee for Standardisation, Brussels, Belgium. 
  12. Eurocode (2015b), Design of Steel Structures. Part 1.4: General rules. Supplementary Rules for Stainless Steels, European Committee for Standardisation; Brussels, Belgium. 
  13. Eurocode (2020c), Design of Steel Structures. Part 1.4: General rules. Supplementary rules for stainless steels, European Committee for Standardisation; Brussels, Belgium. 
  14. Fang, C., Zhou, F. and Luo, C. (2018), "Cold-formed stainless steel RHSs/SHSs under combined compression and cyclic bending", J. Constr. Steel. Res., 141, 9-22. https://doi.org/10.1016/j.jcsr.2017.11.001. 
  15. Haddad, M. (2015), "Concentric tubular steel braces subjected to seismic loading: Finite element modeling", J. Constr. Steel. Res., 104, 155-166. https://doi.org/10.1016/j.jcsr.2014.10.013. 
  16. Hassan, M.S, Salawdeh, S. and Goggins, J. (2018), "Determination of geometrical imperfection models in finite element analysis of structural steel hollow sections under cyclic axial loading", J. Constr. Steel. Res., 141, 189-203. https://doi.org/10.1016/j.jcsr.2017.11.012. 
  17. Kim, R.H., Kim, T.S., Im, S.H. and Xi, Y. (2021), "Hysteretic behavior comparison of austenitic and lean duplex stainless steel square hollow section members under cyclic axial loading", Eng. Struct., 237(15), 112227. https://doi.org/10.1016/j.engstruct.2021.112227. 
  18. KS KS D 3536 (2015), Stainless steel pipes for machine and structural purpose, Korean Industrial Standards; Seoul, Korea. 
  19. Kumar, A.P.C. and Shaoo, D.R. (2018), "Fracture ductility of hollow circular and square steel braces under cyclic loading", Thin Wall. Struct., 130, 347-361. https://doi.org/10.1016/j.tws.2018.06.005. 
  20. Lemaitre, J. and Chaboche, J.L. (1994), "Mechanics of solid materials", Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/CBO9891139167970. 
  21. Liu, Y. and Young, B. (2003), "Buckling of stainless steel square hollow section compression members", J. Constr. Steel. Res., 59(2), 165-177. https://doi.org/10.1016/S0143-974X(02)00031-7. 
  22. Ma, J.L., Chan, T.M. and Young, B. (2018), "Design of cold-formed high-strength steel tubular stub columns", J. Struct. Eng., 144, 04018063. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002046. 
  23. Metelli, G. (2013), "Theoretical and experimental study on the cyclic behaviour of X braced steel frames", Eng. Struct., 46, 763-773.https://doi.org/10.1016/j.engstruct.2012.08.021. 
  24. Nip, K.H., Gardner, L. and Elghazouli, A.Y. (2010a), "Cyclic testing and numerical modelling of carbon steel and stainless steel tubular bracing members", Eng. Struct., 32(2), 424-441. https://doi.org/10.1016/j.engstruct.2009.10.005. 
  25. Nip, K.H., Gardner, L., Davies, C.M. and Elghazouli, A.Y. (2010b), "Extremely low cycle fatigue tests on structural carbon steel and stainless steel", J. Constr. Steel. Res., 66(1), 96-110. https://doi.org/10.1016/j.jcsr.2009.08.004. 
  26. Rice, J.R. and Tracey, D.M. (1969), "On the ductile enlargement of voids in triaxial stress fields", J. Mech. Phys. Solids, 17(3), 201-217. https://doi.org/10.1016/0022-5096(69)90033-7. 
  27. Shrinivas, V., Varma, S.K. and Murr, L.E. (1995), "Deformation-induced martensitic characteristics in 304 and 316 stainless steels during room-temperature rolling", Metall. Mater. Trans. A., 26(3), 661-671. https://doi.org/10.1007/BF02663916. 
  28. Sohrabi, M.J., Naghizadeh, M. and Hamed, M. (2020), "Deformation-induced martensite in austenitic stainless steels: A review", Arch. Civ. Mech. Eng., 20(4), 1-24. https://doi.org/10.1007/s43452-020-00130-1. 
  29. Tayyebi, K. and Sun, M. (2021), "Design of direct-formed square and rectangular hollow section stub columns", J. Construct. Steel. Res., 178, 16499. https://doi.org/10.1016/j.jcsr.2020.106499. 
  30. Tremblay, R. (2002), "Inelastic seismic response of steel bracing members", J. Construct. Steel. Res., 58(5-8), 665-701. https://doi.org/10.1016/S0143-974X(01)00104-3. 
  31. Trutalli, D., Stefani, L.D., Marchi, L. and Scotta, R. (2019), "Seismic capacity of steel frames braced with cross-concentric rectangular plates: Non-linear analyses", J. Constr. Steel. Res., 161, 128-136. https://doi.org/10.1016/j.jcsr.2019.07.003. 
  32. Wang, F., Young, B. and Gardner, L. (2020), "Compressive behaviour and design of CFDST cross sections with stainless steel outer tubes", J. Constr. Steel. Res., 170, 105942. https://doi.org/10.1016/j.jcsr.2020.105942. 
  33. Yang, F., Veljkovic, M. and Liu, Y. (2021), "Fracture simulation of partially threaded bolts under tensile loading", Eng. Struct., 226, 111373.https://doi.org/10.1016/j.engstruct.2020.111373. 
  34. Zheng, S., Zhou, F., Cheng, J., Li, H.T. and Rong, R. (2022), "Experimental study on cyclic hardening characteristics of structural stainless steels", J. Constr. Steel. Res., 191, 107196. https://doi.org/10.1016/j.jcsr.2022.107196. 
  35. Zhou, F., Fang, C. and Chen, Y. (2018), "Experimental and numerical studies on stainless steel tubular members under axial cyclic loading", Eng. Struct., 171(15), 72-85. https://doi.org/10.1016/j.engstruct.2018.05.093. 
  36. Zhou, F., Huang, L. and Li, H.T. (2022), "Cold-formed stainless steel SHS and RHS columns subjected to local flexural interactive buckling", J. Constr. Steel. Res., 188, 106999. https://doi.org/10.1016/j.engstruct.2018.05.093. 
  37. Zub, C.I., Stratan, A. and Dubina, D. (2020), Calibration of Parameters of Combined Hardening Model Using Tensile Tests.