DOI QR코드

DOI QR Code

Shear resistance of corrugated web steel beams with circular web openings: Test and machine learning-based prediction

  • Yan-Wen Li (State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University) ;
  • Guo-Qiang Li (State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University) ;
  • Lei Xiao (State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University) ;
  • Michael C.H. Yam (Department of Building & Real Estate, The Hong Kong Polytechnic University) ;
  • Jing-Zhou Zhang (State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University)
  • Received : 2022.02.07
  • Accepted : 2023.03.11
  • Published : 2023.04.10

Abstract

This paper presents an investigation on the shear resistance of corrugated web steel beams (CWBs) with a circular web opening. A total of five specimens with different diameters of web openings were designed and tested with vertical load applied on the top flange at mid-span. The ultimate strengths, failure modes, and load versus middle displacement curves were obtained from the tests. Following the tests, numerical models of the CWBs were developed and validated against the test results. The influence of the web plate thickness, steel grade, opening diameter, and location on the shear strength of the CWBs was extensively investigated. An XGBoost machine learning model for shear resistance prediction was trained based on 256 CWB samples. The XGBoost model with optimal hyperparameters showed excellent accuracy and exceeded the accuracy of the available design equations. The effects of geometric parameters and material properties on the shear resistance were evaluated using the SHAP method.

Keywords

Acknowledgement

This study is financially support by the National Key Research and Development Program of China (Project No. 2017YFC0703607), the Japan Society for the Promotion of Science, KAKENHI Grant (No. JP20F20344) and the Chinese National Engineering Research Centre (CNERC) for Steel Construction (Hong Kong Branch) at The Hong Kong Polytechnic University (Project No. 1-BBV4). The assistance of Mr Jie-Yao Qiu and Mr Ping Zhang in the experimental and numerical work is greatly acknowledged.

References

  1. ASTM A370-21 (2012), Standard Test Methods and Definitions for Mechanical Testing of Steel Products, ASTM International, West Conshohocken, PA 19428-2959, United States. 
  2. Barakat, S. and Leblouba, M. (2018), "Experimental and analytical study on the shear strength of corrugated web steel beams", Steel Compos. Struct., 28(2), 251-266. https://doi.org/10.12989/scs.2018.28.2.251. 
  3. Barakat, S., Al Mansouri, A. and Altoubat, S. (2015), "Shear strength of steel beams with trapezoidal corrugated webs using regression analysis", Steel Compos. Struct., 18(3), 757-773. http://dx.doi.org/10.12989/scs.2015.18.3.757. 
  4. CECS291:2011 (2011), Technical Specification for Steel Structures with Corrugated Webs, China Planning Press, Beijing, China. (in Chinese) 
  5. Chen, T. (2016), "Guestrin, C.: XGBoost: a scalable tree boosting system", Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'16), San Francisco, USA, August. 
  6. Chen, X.C., Bai, Z.Z., Zeng, Y., Jiang, R.J. and Au, F.T.K. (2016), "Prestressed concrete bridges with corrugated steel webs: Nonlinear analysis and experimental investigation", Steel Compos. Struct., 21(5), 1045-1067. http://dx.doi.org/10.12989/scs.2016.21.5.1045. 
  7. Darwin, D. and Lucas, W.K. (1990), "LRFD for steel and composite beams with web openings", J. Struct. Eng., ASCE, 116(6), 1579-1593. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:6(1579). 
  8. Degtyarev, V.V. (2021), "Neural networks for predicting shear strength of CFS channels with slotted webs", J. Constr. Steel Res., 177, 106443. https://doi.org/10.1016/j.jcsr.2020.106443. 
  9. Driver, R.G., Abbas, H.H. and Sause, R. (2006), "Shear behavior of corrugated web bridge girders", J. Struct. Eng., (United States), ASCE, 132(2), 195-203. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:2(195). 
  10. Easley, J.T. (1975), "Buckling formulas for corrugated metal shear diaphragms", J. Struct. Division, ASCE, 101(7), 1403-1417. https://doi.org/10.1061/JSDEAG.0004095. 
  11. EC3 (2006). Eurocode 3: Design of steel structures-Part 1-5: Plated structural elements. CEN Brussels, Belgium. 
  12. Elgaaly, M., Hamilton, R.W. and Seshadri, A. (1996), "Shear strength of beams with corrugated webs", J. Struct. Eng., 122(4), 390-398. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:4(390). 
  13. Elgaaly, M., Seshadri, A. and Hamilton, R.W. (1997), "Bending strength of steel beams with corrugated webs", J. Struct. Eng., 123(6), 772-782. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:6(772). 
  14. Erdal, F., Tunca, O. and Ozcelik, R. (2020), "Experimental investigation and numerical analysis of optimally designed composite beams with corrugated steel webs", Steel Compos. Struct., 37(1), 1-14. https://doi.org/10.12989/scs.2020.37.1.001. 
  15. Feng, D.C., Wang, W.J., Mangalathu, S. and Taciroglu, E. (2021), "Interpretable XGBoost-SHAP machine-learning model for shear strength prediction of squat rc walls", J. Struct. Eng., 147(11), 04021173. https://doi.org/10.1061/(ASCE) ST.1943-541X.0003115. 
  16. Galambos, T.V. (1998), Guide to Stability Design Criteria for Metal Structures, John Wiley & Sons, New York, NY, 
  17. Hanoon, A.N., Al Zand, A.W. and Yaseen, Z.M. (2021), "Designing new hybrid artificial intelligence model for CFST beam flexural performance prediction", Eng. Comput., 1-27. https://doi.org/10.1007/s00366-021-01325-7. 
  18. Jieyao, Q. and Guoqiang, L. (2016), "Elastic shear buckling of corrugated web girders with circular opening", J. Shanghai Jiaotong Univ., 50(3), https://doi.org/10.16183/j.cnki.jsjtu.2016.03.007. 
  19. Khandelwal, M. and Singh, T.N. (2007), "Evaluation of blast-induced ground vibration predictors", Soil Dyn. Earthq. Eng., 27(2), 116-125. https://doi.org/10.1016/j.soildyn.2006.06.004. 
  20. Kiymaz, G., Coskun, E., Cosgun, C. and Seckin, E. (2010), "Transverse load carrying capacity of sinusoidally corrugated steel web beams with web openings", Steel Compos. Struct., 10(1), 69-85. https://doi.org/10.12989/scs.2010.10.1.069. 
  21. Ko, H.J., Moon, J., Shin, Y.W. and Lee, H.E. (2013), "Nonlinear analyses model for composite box-girders with corrugated steel webs under torsion", Steel Compos. Struct., 14(5), 409-429. https://doi.org/10.12989/scs.2013.14.5.409. 
  22. Kudryavtsev, S. (2018), "Influence of web openings on bearing capacity of triangularly corrugated web beam", IOP Conference Series: Materials Science and Engineering, IOP Publishing, 42034. https://doi.org/10.1088/1757-899X/365/4/042034. 
  23. Li, Y., Dai, Q., Zhang, Y. and Liu, C. (2021), "Free vibration performance of curved composite box-girders with corrugated steel webs", Steel Compos. Struct., 186(1), 137-147. https://doi.org/10.12989/scs.2021.41.1.137. 
  24. Lindner, J. and Huang, B. (1994), "Trapezoidally web girder with cut out. Report no. VR 2105", Institute for Building Construction and Stability at Technical University of Berlin (in German). 
  25. Liu, S., Corte, W. De, Ding, H. and Taerwe, L. (2021), "Mechanical properties of curved composite box girders with corrugated steel webs", Steel Compos. Struct., 41(1), 65-84. https://doi.org/10.12989/scs.2021.41.1.065. 
  26. Liu, T.C.H. and Chung, K.F. (2003), "Steel beams with large web openings of various shapes and sizes: Finite element investigation", J. Constr. Steel Res., 59(9), 1159-1176. https://doi.org/10.1016/S0143-974X(03)00030-0. 
  27. Lu, Y. and Ji, L. (2018), "Behavior of optimized prestressed concrete composite box-girders with corrugated steel webs", Steel Compos. Struct., 26(2), 183-196. https://doi.org/10.12989/scs.2018.26.2.183. 
  28. Lundberg, S.M., and Lee, S.I. (2017), "A unified approach to interpreting model predictions", Proceedings of the 31st International Conference on Neural Information Processing Systems, California, USA, December. 
  29. Mangalathu, S., Jang, H., Hwang, S.H. and Jeon, J.S. (2020), "Data-driven machine-learning-based seismic failure mode identification of reinforced concrete shear walls", Eng. Struct., 208, 110331. https://doi.org/10.1016/j.engstruct.2020.110331. 
  30. Mohamed, H.S., Wu, B., Shao, Y.B. and Du, X.C. (2022), "Design shear strength of CWGs with web-circular opening made of HSB800-high strength steel", Thin Wall. Struct., 170, 108559. https://doi.org/10.1016/j.tws.2021.108559. 
  31. Moon, J., Yi, J., Choi, B.H. and Lee, H.E. (2009), "Shear strength and design of trapezoidally corrugated steel webs", J. Constr. Steel Res., 65(5), 1198-1205. https://doi.org/10.1016/j.jcsr.2008.07.018. 
  32. Orun, A.E., and Guler, M.A. (2017), "Effect of hole reinforcement on the buckling behaviour of thin-walled beams subjected to combined loading", Thin. Wall. Struct., 118, 12-22. https://doi.org/10.1016/j.tws.2017.04.034. 
  33. Padmanaban, P. and Henderson, J.H. (2020), "Experimental and numerical studies on shear buckling behavior of corrugated web steel girders with cutouts", Arab. J. Sci. Eng. (Springer Science & Business Media BV), 45(5). https://doi.org/10.1007/s13369-020-04449-y. 
  34. Parsa, A.B., Movahedi, A., Taghipour, H., Derrible, S. and Mohammadian, A.K. (2020), "Toward safer highways, application of XGBoost and SHAP for real-time accident detection and feature analysis", Accident Anal. Prevent., 136, 105405. https://doi.org/10.1016/j.aap.2019.105405. 
  35. Redwood, R.G. and Uenoya, M. (1979), "Critical loads for webs with holes", J. Struct. Div., 105(10), 2053-2067. https://doi.org/10.1061/JSDEAG.0005254. 
  36. Ribeiro, M.T., Singh, S. and Guestrin, C. (2016), "'Why should i trust you?' Explaining the predictions of any classifier", Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, August. 
  37. Romeijn, A., Sarkhosh, R. and de Hoop, H. (2009), "Basic parametric study on corrugated web girders with cut outs", J. Construct. Steel Res., 65(2), 395-407. https://doi.org/10.1016/j.jcsr.2008.02.006. 
  38. Shao, Y.B. and Wang, Y.M. (2016), "Experimental study on shear behavior of I-girder with concrete-filled tubular flange and corrugated web", Steel Compos. Struct., 22(6), 1465-1486. https://doi.org/10.12989/scs.2016.22.6.1465. 
  39. Shariati, M., Faegh, S.S., Mehrabi, P., Bahavarnia, S., Zandi, Y., Masoom, D.R., Toghroli, A., Trung, N.T. and Salih, M.N.A. (2019), "Numerical study on the structural performance of corrugated low yield point steel plate shear walls with circular openings", Steel Compos. Struct., 33(4), 569-581. https://doi.org/10.12989/scs.2019.33.4.569. 
  40. Shi, G., Zhu, X. and Ban, H. (2016), "Material properties and partial factors for resistance of high-strength steels in China", J. Construct. Steel Res., 121, 65-79. https://doi.org/10.1016/j.jcsr.2016.01.012. 
  41. Strumbelj, E. and Kononenko, I. (2014), "Explaining prediction models and individual predictions with feature contributions", Knowledge Inform. Syst., 41(3), 647-665. https://doi.org/10.1007/s10115-013-0679-x. 
  42. Systemes, D. (2014), Abaqus 6.14 Documentation, Providence, RI: Dassault Systemes. 
  43. Tseng, P.Y., Chen, Y.T., Wang, C.H., Chiu, K.M., Peng, Y.S., Hsu, S.P., Chen, K.L., Yang, C.Y. and Lee, O.K.S. (2020), "Prediction of the development of acute kidney injury following cardiac surgery by machine learning", Critical Care, BioMed Central, 24(1), 1-13. https://doi.org/10.1186/s13054-020-03179-9. 
  44. Wang, Y. and Shao, Y. (2018), "Stress analysis of a new steel-concrete composite I-girder", Steel Compos. Struct., 28(1), 51-61. https://doi.org/10.12989/scs.2018.28.1.051. 
  45. Xu, D., Ni, Y. and Zhao, Y. (2015), "Analysis of corrugated steel web beam bridges using spatial grid modelling", Steel Compos. Struct., 18(4), 853-871. http://dx.doi.org/10.12989/scs.2015.18.4.853. 
  46. Zhan, Y., Liu, F., Ma, Z.J., Zhang, Z., Duan, Z. and Song, R. (2019), "Comparison of long-term behavior between prestressed concrete and corrugated steel web bridges", Steel Compos. Struct., 30(6), 535-550. https://doi.org/10.12989/scs.2019.30.6.535. 
  47. Zhao, H., Gou, H., Ni, Y.S. and Xu, D. (2019), "Reinforcement design of the top and bottom slabs of composite box girder with corrugated steel webs", Steel Compos. Struct., 33(4), 537-550. https://doi.org/10.12989/scs.2019.33.4.537. 
  48. Ziemian, R.D. (2010), Guide to Stability Design Criteria for Metal Structures, New York, NY, USA. https://doi.org/10.1002/9780470549087.