DOI QR코드

DOI QR Code

Experimental study on bearing capacity of PFCC column-RC beam joint reinforced with CST

  • Ping Wu (Department of Civil Engineering and Architecture, Anhui University of Technology) ;
  • Dongang Li (Department of Civil Engineering and Architecture, Anhui University of Technology) ;
  • Feng Yu (Department of Civil Engineering and Architecture, Anhui University of Technology) ;
  • Yuan Fang (Department of Civil Engineering and Architecture, Anhui University of Technology) ;
  • Guosheng Xiang (Department of Civil Engineering and Architecture, Anhui University of Technology) ;
  • Zilong Li (Department of Civil Engineering and Architecture, Anhui University of Technology)
  • Received : 2022.01.18
  • Accepted : 2023.03.20
  • Published : 2023.04.10

Abstract

An experimental study of eleven PVC-FRP Confined Concrete (PFCC) column-Reinforced Concrete (RC) beam joints reinforced with Core Steel Tube (CST) under axial compression is carried out. All specimens are designed in accordance with the principle of "weak column and strong joint". The influences of FRP strips spacing, length and steel ratio of CST, height and stirrup ratio of joint on mechanical behavior are investigated. As the design anticipated, all specimens are destroyed by column failure. The failure mode of PFCC column-RC beam joint reinforced with CST is the yielding of longitudinal steel bars, CST and stirrups of column as well as the fracture of FRP strips and PVC tube. The ultimate bearing capacity decreases as FRP strips spacing or joint height increases. The effects of other three studied parameters on ultimate bearing capacity are not obvious. The strain development rules of longitudinal steel bars, PVC tube, FRP strips, column stirrups and CST are revealed. The effects of various studied parameters on stiffness are also examined. Additionally, an influence coefficient of joint height is introduced based on the regression analysis of test data, a theoretical formula for predicting bearing capacity is proposed and it agrees well with test data.

Keywords

Acknowledgement

This work was supported by National Natural Science Foundation of China (No. 52078001), Outstanding Youth Fund of Anhui Province (No. 2008085J29), Major Science and Technology Project of Anhui Province (No. 202203a07020005), and Key Research and Development Project of Anhui Province (No.2022i01020005).

References

  1. Attari, B. and Tavakkolizadeh, M. (2019), "An experimental investigation on effect of elevated temperatures on bond strength between externally bonded CFRP and concrete", Steel Compos. Struct, 32(5), 559-569.https://doi.org/10.12989/scs.2019.32.5.559. 
  2. Del Rey Castillo, E., Griffith, M. and Ingham, J. (2018), "Seismic behavior of RC columns flexurally strengthened with FRP sheets and FRP anchors", Compos. Struct, 203, 382-395. https://doi.org/10.1016/j.compstruct.2018.07.029. 
  3. Chen, B.L. and Wang, L.G. (2019), "Experimental study on flexural behavior of splicing concrete-filled GFRP tubular composite members connected with steel bars", Steel Compos. Struct, 18(5), 1129-1144. https://doi.org/10.12989/scs.scs.2015.18.5.1129. 
  4. Chen, G.M., Zhang, Z., Li, Y.L., Li, X.Q. and Zhou, C.Y. (2016), "T-section RC beams shear-strengthened with anchored CFRP U-strips", Compos. Struct, 144, 57-79. https://doi-orgs.vpn2.njau.edu.cn/10.1016/j. compstruct.2016.02.033. 
  5. Dai, T. (2012), "Study on the behaviors of concrete-filled BFRPPVC tubular stubs", China, Fu zhou: Doctoral dissertation Fu zhou Uni of Archit Tech. 
  6. Fakharifar, M. and Chen, G. (2017), "FRP-confined concrete filled PVC tubes: A new design concept for ductile column construction in seismic regions", Constr. Build. Mater., 130, 1-10. https://doi.org/10.1016/j.conbuildmat.2016.11.056. 
  7. Fakharifar, M. and Chen, G. (2016), "Compressive behavior of FRP-confined concrete-filled PVC tubular columns", Compos. Struct, 141, 91-109. https://doi.org/10.1016/j.compstruct.2016.01.004. 
  8. Gao, C., Huang, L., Yan, L., Jin, R. and Kasal, B. (2019), "Strength and ductility improvement of recycled aggregate concrete by polyester FRP-PVC tube confinement", Compos. Part B Eng, 162(1), 178-197. https://doi.org/10.1016/j.compositesb.2018.10.102. 
  9. Haddad, G.N. (1977), "Recent innovations in PVC/FRP composite pipe", Polymer-Plastics Tech Eng, 9(2), 207-251.  https://doi.org/10.1080/03602557708055840
  10. Islam, M.R., Mansur, M.A. and Maalej M. (2005), "Shear strengthening of RC deep beams using externally bonded FRP systems", Cement Concrete Comp., 27, 413-420. https://doi.org/10.1016/j.cemconcomp.2004.04.002. 
  11. Jiang, S.F., Wu Z.L. and Wu Z.Q. (2014), "Experimental study on hysteretic behavior of FRP-PVC confined circular section reinforced concrete composite columns", J Build Struct, 35, 111-118. https://doi.org/10.14006/j.jzjgxb.2014.02.016. 
  12. Jiang, S.F., Ma, S.L., Liang, C.L. and Wu, Z.Q. (2012), "Axial behavior of CFRP-PVC-confined concrete stubs", J Comput Theor., 9(1), 197-203. https://doi.org/10.1166/asl.2012.2634. 
  13. Jiang, S.F., Ma, S.L. and Wu, Z.Q. (2014), "Experimental study and theoretical analysis on slender concrete-filled CFRP-PVC tubular columns", Constr. Build. Mater., 53, 475-487. https://doi.org/10.1016/j.conbuildmat.2013. 11.089. 
  14. Kalfat, R., Al-Mahaidi, R. and Smith, S.T. (2013), "Anchorage devices used to improve the performance of reinforced concrete beams retrofitted with FRP composites: state-of-the-art review", J Compos. Constr, 17, 14-33. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000276. 
  15. Mirmiran, A., Shahawy, M., Samaan, M., Echary, H.E., Mastrapa, J.C. and Pico, O. (1998), "Effect of column parameters on FRP-confined concrete", J Compos Constr ASCE, 2, 175-185.  https://doi.org/10.1061/(ASCE)1090-0268(1998)2:4(175)
  16. Mammen, A.M. and Antony, M. (2017), "Experimental study on FRP-PVC confined circular columns", Int. J. Eng. Res. Technol., 4(05), 1386-1390. 
  17. Niu, D., Yu, F. and Wang, Z. (2017), "Eccentric compression performance of PVC-CFRP confined reinforced concrete column", Acta Materiae Compositae Sinica, 34, 2356-2366. https://doi.org/10.13801/j.cnki.fhclxb.20170222.002. 
  18. Ouyang, Y., Kwan, A.K., Lo, S.H. and Ho, J.C.M. (2017), "Finite element analysis of concrete-filled steel tube (CFST) columns with circular sections under eccentric load", Eng. Struct., 148, 387-398. https://doi.org/10.1016/j.engstruct.2017.06.064. 
  19. Ozbakkaloglu, T. and Vincent, T. (2013), "Axial compressive behavior of circular high-strength concrete-filled frp tubes", J Compos. Constr., 18(2). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000410. 
  20. Prashob, P.S. Shashikala, A.P. and Somasundaran, T.P. (2019), "Characteristics of CFRP strengthened tubular joints subjected to different monotonic loadings", Steel Compos Struct, 32(3), 361-372. https://doi.org/10.12989/scs.2019.32.3.361. 
  21. Richart, F.E., Brandtzaeg, A. and Brown, R.L. (1929), "Failure of concrete under combined compressive stresses", USA, Illinois: University of Illinois Engineering Experimental Station. 
  22. Roy, B. and Laskar, A.I. (2018), "Cyclic performance of beam-column subassemblies with construction joint in column retrofitted with GFRP", Struct., 14, 290-300. https://MSYXTLUQPJUB/10.1016/j.istruc.2018.04.002. 
  23. Shitindi, R.V. (1999), Behaviors of Concrete Cylinders Confined with FRP Spirals, Ph.D. Dissertation, University of Kyoto.
  24. Saafi, M. (2001), Development and Behavior of a New Hybrid Column in Infrastructure Systems, Ph.D. Dissertation, Univ. Alabama. 
  25. Toutanji, H. (2001), "Design equations for concrete columns confined with hybrid composite materials", Adv. Compos. Mater, 10, 127-138. https://doi.org/10.1163/156855101753396609. 
  26. Toutanji, H. and Saafi, M. (2001), "Durability studies on concrete columns encased in PVC-FRP composite tubes", Compos. Struct., 54, 27-35. https://doi.org/10.1016/S0263-8223(01)00067-8. 
  27. Wang, Z.W. (2008), Study on the Behaviors of Concrete-Filled PVC-FRP Tubular Stubs under Axial Loading, Ph.D. Dissertaton, Xi'an Uni of Archit Tech. 
  28. Yu, F. (2007), Experimental Study and Theoretical Analysis on Mechanical Behavior of PFCC Column, Ph.D. Dissertation. Xi'an Uni of Archit Tech. https://doi.org/10.7666/d.d193638. 
  29. Feng, Y.U. and Ditao, N.I.U. (2013), "Experimental study on PVC-FRP confined reinforced concrete short column under axial compression", J. Build. Struct., 34, 129-136. https://doi.org/10.14006/j.jzjgxb.2013.06.018. 
  30. Yu, F. and Niu D.T. (2015), "Experimental Study on PVC-FRP confined long concrete column subjected to axial compression", J. Basic. Sci. Eng., 23, 79-91. https://doi.org/10.16058/j.issn.1005-0930.2015.01.007. 
  31. Yu, F. and Niu, D.T. (2010), "Stress-strain model of PFCC column subjected to axial compression", Int. J. Phys. Sci., 5, 2304-2309. https://doi.org/10.1126/science.1194869. 
  32. Yu, F., Li, D., Niu, D., Xu, G., Cheng, A. and Xu, L. (2014), "Analysis of bearing capacity of PVC-FRP confined reinforced concrete columns under eccentric compression", J. Xi'an Uni. Architect. Tech., (Natural Science Edition), 46, 660-664. https://doi.org/10.3969/j.issn.1006-7930.2014.05.007. 
  33. Yu, F., Xu, G.S. and Niu, D.T. (2018), "Experimental study on PFCC under low cyclic loading", Constr. Build. Mater., 177, 287-302. https://doi.org/10.1016/j.conbuildmat.2018.05.111. 
  34. Yu, F., Xu, G.S. and Cheng, A.C. (2015), "Study on restoring force model of PVC-FRP tube confined reinforced concrete column", J. Build. Struct., 36, 66-72. https://doi.org/10.7511/jslx201501018. 
  35. Yu, F., Li, D., Niu, D., Zhu, D., Kong, Z., Zhang, N. and Fang, Y. (2019), "A model for ultimate bearing capacity of PVC-CFRP confined concrete column with reinforced concrete beam joint under axial compression", Constr. Build. Mater., 214, 668-676. https://doi.org/10.1016/j.conbuildmat.2019.04.131 
  36. Zhu, D.F. (2018), Study on Mechanical Behavior of Joint of PFCC Column and Reinforced Concrete Beam Under Axial Compression, Master's Degree Thesis, Anhui Uni Tech.