DOI QR코드

DOI QR Code

Vibration response of rotating carbon nanotube reinforced composites in thermal environment

  • Ozge Ozdemir (Department of Aeronautical Engineering, Istanbul Technical University) ;
  • Ismail Esen (Department of Mechanical Engineering, Karabuk University) ;
  • Huseyin Ural (Department of Aeronautical Engineering, Istanbul Technical University)
  • Received : 2021.10.21
  • Accepted : 2023.03.16
  • Published : 2023.04.10

Abstract

This paper deals with the free vibration behavior of rotating composite beams reinforced with carbon nanotubes (CNTs) under uniform thermal loads. The temperature-dependent beam material is assumed to be a mixture of single-walled carbon nanotubes (SWCNTs) in an isotropic matrix and five different functionally graded (FG) distributions of CNTs are considered according to the variation along the thickness, namely the UD-uniform, FG-O, FG-V, FG-Λ and FG-X distributions where FG-V and FG-Λ are unsymmetrical patterns. Considering the Timoshenko beam theory (TBT), a new finite element formulation of functionally graded carbon nanotube reinforced composite (FGCNTRC) beam is created for the first time. And the effects of several essential parameters including rotational speed, hub radius, effective material properties, slenderness ratio, boundary conditions, thermal force and moments due to temperature variation are considered in the formulation. By implementing different boundary conditions, some new results of both symmetric and non-symmetrical distribution patterns are presented in tables and figures to be used as benchmark for further validation. In addition, as an alternative advanced composite application for rotating systems exposed to thermal load, the positive effects of CNT addition in improving the dynamic performance of the system have been observed and the results are presented in several tables and figures.

Keywords

References

  1. Abdelrahman, A.A., Esen, I. and Eltaher, M.A. (2021), "Vibration response of Timoshenko perforated microbeams under accelerating load and thermal environment", Appl. Math. Comput., 407, 126307. https://doi.org/10.1016/j.amc.2021.126307.
  2. Akurathi, V.L. and Kolli, L.C. (2017), "Free vibration behavior of fg-cnt reinforced composite plates using higher order shear deformation theory", Int. J. Res. Appl. Sci. Eng. Technol., 5(11), 1408-1418. https://doi.org/10.22214/ijraset.2017.11204.
  3. Alazwari, M.A., Daikh, A.A., Houari, M.S.A., Tounsi, A. and Eltaher, M.A. (2021), "On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations", Steel Compos. Struct., 40(3), 389-404. https://doi.org/10.12989/scs.2021.40.3.389.
  4. Almitani, K.H. (2019), "On forced and free vibrations of cutout squared beams", Steel Compos. Struct., 32(5), 643-655. https://doi.org/10.12989/scs.2019.32.5.643.
  5. Almitani, K.H., Eltaher, M.A., Abdelrahman, A.A. and Abd-El-Mottaleb, H.E. (2021), "Finite element based stress and vibration analysis of axially functionally graded rotating beams.", Struct. Eng. Mech., Int. J., 79(1), 23-33. https://doi.org/10.12989/sem.2021.79.1.023
  6. Amin, G.S., Malekzadeh, P. and Ziaee, S. (2017), "Vibration analysis of pre-twisted functionally graded carbon nanotube reinforced composite beams in thermal environment", Compos. Struct., 162, 325-340. https://doi.org/10.1016/j.compstruct.2016.12.009.
  7. Ansari, R., Faghih Shojaei, M., Mohammadi, V., Gholami, R. and Sadeghi, F. (2014), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes, Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams", Compos. Struct., 113(1), 316-327. https://doi.org/10.1016/j.compstruct.2014.03.015.
  8. Ansari, R., Torabi, J. and Hassani, R. (2019), "Thermal buckling analysis of temperature-dependent FG-CNTRC quadrilateral plates", Comput. Math. Appl., 77(5), 1294-1311. https://doi.org/10.1016/j.camwa.2018.11.009.
  9. Arvin, H. and Bakhtiari-Nejad, F. (2013a), "Nonlinear free vibration analysis of rotating composite Timoshenko beams", Compos. Struct., 96, 29-43. https://doi.org/10.1016/j.compstruct.2012.09.009.
  10. Arvin, H. and Bakhtiari-Nejad, F. (2013b), "Nonlinear modal interaction in rotating composite Timoshenko beams", Compos. Struct., 96, 121-134. https://doi.org/10.1016/j.compstruct.2012.10.015.
  11. Aydogdu, M. (2014), "On the vibration of aligned carbon nanotube reinforced composite beams", Adv. Nano Res., 2(4), 199-210. https://doi.org/10.12989/anr.2014.2.4.199.
  12. Bhattacharya, S. and Das, D. (2019), "Free vibration analysis of bidirectional-functionally graded and double-tapered rotating micro-beam in thermal environment using modified couple stress theory", Compos. Struct., 215, 471-492. https://doi.org/10.1016/j.compstruct.2019.01.080.
  13. Chaudhari, V.K. and Lal, A. (2016), "Nonlinear free vibration analysis of elastically supported nanotube-reinforced composite beam in thermal environment", Procedia Eng., 144, 928-935. https://doi.org/https://doi.org/10.1016/j.proeng.2016.05.119.
  14. Chung, J. and Yoo, H.H. (2002), "Dynamic analysis of a rotating cantilever beam by using the finite element method", J. Sound Vib., 249(1), 147-164. https://doi.org/10.1006/jsvi.2001.3856.
  15. Daikh, A.A., Drai, A., Houari, M.S.A. and Eltaher, M.A. (2020), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes", Steel Compos. Struct, 36(6), 643-656. https://doi.org/10.12989/scs.2020.36.6.643.
  16. Demirsoy K.E. and Ozdemir, O. (2021), "Finite element formulation and free vibration analyses of rotating functionally graded blades", J. Theor. Appl. Mech., 59(1), 3-15. https://doi.org/10.15632/jtam-pl/127537.
  17. Di Sciuva, M. and M. Sorrenti. (2019), "Bending, free vibration and buckling of functionally graded carbon nanotube-reinforced sandwich plates, using the extended refined zigzag theory", Comp. Struct., 227, 111324. https://doi.org/10.1016/j.compstruct.2019.111324.
  18. Van Do, V. N., Jeon, J.T. and Lee, C.H. (2020), "Dynamic analysis of carbon nanotube reinforced composite plates by using bezier extraction based isogeometric finite element combined with higher-order shear deformation theory", Mech. Mater., 142, 103307. https://doi.org/10.1016/j.mechmat.2019.103307.
  19. Ebrahimi, F. and Jafari, A. (2016), "A higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities", J. Eng., 2, 1-20, https://doi.org/10.1155/2016/9561504.
  20. Eltaher, M.A. and Mohamed, S.A. (2020), "Buckling and stability analysis of sandwich beams subjected to varying axial loads", Steel Comp. Struct., 34(2), 241-260. https://doi.org/10.12989/scs.2020.34.2.241.
  21. Eltaher, M.A., Abdelrahman, A.A. and Esen, I. (2021), "Dynamic analysis of nanoscale Timoshenko CNTs based on doublet mechanics under moving load", Euro. Phys. J. Plus, 123, 1-21. https://doi.org/10.1140/epjp/s13360-021-01682-8.
  22. Esen, I. (2019), "Dynamic response of functional graded Timoshenko beams in a thermal environment subjected to an accelerating load", Euro. J. Mech. A Solids, 78, 103841. https://doi.org/10.1016/j.euromechsol.2019.103841.
  23. Esen, I., Abdelrhmaan, A.A. and Eltaher, M.A. (2021), "Free vibration and buckling stability of FG nanobeams exposed to magnetic and thermal fields", Eng. Comput., 38, 3463-3482. https://doi.org/10.1007/s00366-021-01389-5.
  24. Esen, I., Ozarpa, C. and Eltaher, M.A. (2021), "Free vibration of a cracked FG microbeam embedded in an elastic matrix and exposed to magnetic field in a thermal environment.", Compos. Struct., 261, 113552. https://doi.org/10.1016/j.compstruct.2021.113552.
  25. Feli, S., Karami, L. and Jafari, S.S. (2019), "Analytical modeling of low velocity impact on carbon nanotube-reinforced composite (CNTRC) plates", Mech. Adv. Mater. Struct., 26(5), 394-406. https://doi.org/10.1080/15376494.2017.1400613.
  26. Fu, Y., Zhong, J., Shao, X. and Tao, C. (2016), "Analysis of nonlinear dynamic stability for carbon nanotube-reinforced composite plates resting on elastic foundations", Mech. Adv. Mater. Struct., 23(11), 1284-1289. https://doi.org/10.1080/15376494.2015.1068404.
  27. Giannopoulos, G.I., Kakavas, P.A. and Anifantis, N.K. (2008), "Evaluation of the effective mechanical properties of single walled carbon nanotubes using a spring based finite element approach", Comput. Mater. Sci., 41(4), 561-569. https://doi.org/10.1016/j.commatsci.2007.05.016.
  28. Hamed, M.A., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads.", Steel Comp. Struct., 34(1), 75-89. https://doi.org/10.12989/scs.2020.34.1.075.
  29. Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Comput. Mater. Sci., 39(2), 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011.
  30. Heidari, M. and Arvin, H. (2019), "Nonlinear free vibration analysis of functionally graded rotating composite Timoshenko beams reinforced by carbon nanotubes", J. Vib. Control, 25(14), 2063-2078. https://doi.org/10.1177/1077546319847836.
  31. Karami, B., Shahsavari, D. and Janghorban, M. (2018), "A comprehensive analytical study on functionally graded carbon nanotube-reinforced composite plates", Aerosp. Sci. Technol., 82-83, 499-512. https://doi.org/10.1016/j.ast.2018.10.001.
  32. Ke, L.L., Yang, J. and Kitipornchai, S. (2010), "Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams", Compos. Struct., 92(3), 676-683. https://doi.org/10.1016/j.compstruct.2009.09.024.
  33. Khosravi, S., Arvin, H. and Kiani, Y. (2019), "Interactive thermal and inertial buckling of rotating temperature-dependent FGCNT reinforced composite beams", Compos. Part B: Eng., 175, 107178. https://doi.org/10.1016/j.compositesb.2019.107178.
  34. Khosravi, S., Arvin, H. and Kiani, Y. (2019b), "Vibration analysis of rotating composite beams reinforced with carbon nanotubes in thermal environment.", Int. J. Mech. Sci., 164, 105187. https://doi.org/10.1016/j.ijmecsci.2019.105187.
  35. Kilic, B. and Ozdemir, O. (2021), "Vibration and stability analyses of functionally graded beams", Arch. Mech. Eng., 68(1), 93-113. https://doi.org/10.24425/ame.2021.137043.
  36. Kiani, Y. and Eslami, M.R. (2013), "An exact solution for thermal buckling of annular FGM plates on an elastic medium", Compos. Part B: Eng., 45(1), 101-110. https://doi.org/10.1016/j.compositesb.2012.09.034.
  37. Kollar, L.P. and Springer, G.S. (2003), M.R., Mech. Compos. Struct., Cambridge University Press, UK
  38. Lin, B., Chen, B., Zhu, B., Li, J. and Li, Y. (2021), "Dynamic stability analysis for rotating pre-twisted FG-CNTRC beams with geometric imperfections restrained by an elastic root in thermal environment", Thin. Wall. Struct., 16.4, 107902. https://doi.org/10.1016/j.tws.2021.107902.
  39. Lin, F. and Xiang, Y. (2014), "Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories", Appl. Math. Model., 38(15-16), 3741-3754. https://doi.org/10.1016/j.apm.2014.02.008.
  40. Lu, X. and Hu, Z. (2012), "Mechanical property evaluation of single-walled carbon nanotubes by finite element modeling", Compos. Part B Eng., 43(4), 1902-1913. https://doi.org/10.1016/j.compositesb.2012.02.002.
  41. Melaibari, A., Khoshaim, A.B., Mohamed, S.A. and Eltaher, M.A. (2020), "Static stability and of symmetric and sigmoid functionally graded beam under variable axial load", Steel Compos. Struct, 35(5), 671-685. https://doi.org/10.12989/scs.2020.35.5.671.
  42. Mohamed, N., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model", Eng. Comput., 37, 2823-2836. https://doi.org/10.1007/s00366-020-00976-2.
  43. Na, K.S. and Kim, J.H. (2004), "Three-dimensional thermal buckling analysis of functionally graded materials", Compos. Part B Eng., 35(5), 429-437. https://doi.org/10.1016/j.compositesb.2003.11.013
  44. Ozdemir, O. (2016), "Application of the differential transform method to the free vibration analysis of functionally graded Timoshenko beams", J. Theor. Appl. Mech., 54(4), 1205-1217. https://doi.org/10.15632/jtam-pl.54.4.1205.
  45. Ozdemir O,O. and Kaya, M.O. (2013), "Energy expressions and free vibration analysis of a rotating timoshenko beam featuring bending-bending-torsion coupling", Arch. Appl. Mech., 83, 97-108. https://doi.org/10.1007/s00419-012-0634-4
  46. Peng, X.L. and Li, X.F. (2010), "Thermal stress in rotating functionally graded hollow circular disks", Compos. Struct., 92(8), 1896-1904. https://doi.org/10.1016/j.compstruct.2010.01.008.
  47. Piovan, M.T. and Sampaio, R. (2009), "A study on the dynamics of rotating beams with functionally graded properties", J. Sound Vib., 327(1-2), 134-143. https://doi.org/10.1016/j.jsv.2009.06.015.
  48. Rahmani, B. (2018), "Adaptive fuzzy sliding mode control for vibration suppression of a rotating carbon nanotube-reinforced composite beam", J. Vib. Control, 24(12), 2447-2463. https://doi.org/10.1177/1077546316687937.
  49. Shafiei, H. and Setoodeh, A.R. (2017), "Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation", Steel Compos. Struct., 24(1), 65-77. https://doi.org/10.12989/scs.2017.24.1.065.
  50. Shen, H.S. and Xiang, Y. (2013), "Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments", Eng. Struct., 56, 698-708. https://doi.org/10.1016/j.engstruct.2013.06.002.
  51. Shen, H.S.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026.
  52. Shen, H.S. and Zhang, C.L. (2010), "Thermal buckling and post buckling behavior of functionally graded carbon nanotube-reinforced composite plates", Mater. Des., 31(7), 3403-3411. https://doi.org/10.1016/j.matdes.2010.01.048.
  53. Shen, Z., Xia, J. and Cheng, P. (2019), "Geometrically nonlinear dynamic analysis of FG-CNTRC plates subjected to blast loads using the weak form quadrature element method", Compos. Struct., 209, 775-788. https://doi.org/10.1016/j.compstruct.2018.11.009.
  54. Sobhy, M. (2019), "Levy solution for bending response of FG carbon nanotube reinforced plates under uniform, linear, sinusoidal and exponential distributed loadings", Eng. Struct., 182, 198-212. https://doi.org/https://doi.org/10.1016/j.engstruct.2018.12.071.
  55. Tian, J., Zhang, Z. and Hua, H. (2019), "Free vibration analysis of rotating functionally graded double-tapered beam including porosities", Int. J. Mech. Sci., 150, 526-538. https://doi.org/10.1016/j.ijmecsci.2018.10.056.
  56. Torabi, J., Ansari, R. and Hassani, R. (2019), "Numerical study on the thermal buckling analysis of CNT-reinforced composite plates with different shapes based on the higher-order shear deformation theory", Euro. J. Mech. A Solids, 73, 144-160. https://doi.org/10.1016/j.euromechsol.2018.07.009.
  57. Vinyas, M. (2019), "A higher-order free vibration analysis of carbon nanotube-reinforced magneto-electro-elastic plates using finite element methods", Compos. Part B Eng., 158, 286-301. https://doi.org/10.1016/j.compositesb.2018.09.086.
  58. Wang, C.Y. and Zhang, L.C. (2008), "A critical assessment of the elastic properties and effective wall thickness of single-walled carbon nanotubes", Nanotechnology, 19(7), 075705. https://doi.org/10.1088/0957-4484/19/7/075705
  59. Wu, H.L., Yang, J. and Kitipornchai, S. (2016a), "Imperfection sensitivity of postbuckling behaviour of functionally graded carbon nanotube-reinforced composite beams.", Thin. Wall. Struct., 108, 225-233. https://doi.org/https://doi.org/10.1016/j.tws.2016.08.024.
  60. Wu, H.L., Yang, J. and Kitipornchai, S. (2016b), "Nonlinear vibration of functionally graded carbon nanotube-reinforced composite beams with geometric imperfections. Compos. Part B Eng., 90, 86-96. https://doi.org/10.1016/j.compositesb.2015.12.007.
  61. Wu, Z., Zhang, Y. and Yao, G. (2020), "3/2 superharmonic resonance and 1/2 subharmonic resonance of functionally graded carbon nanotube reinforced composite beams", Compos. Struct., 241, 112056. https://doi.org/10.1016/j.compstruct.2020.112056.
  62. Wu, Z., Zhang, Y., Yao, G. and Yang, Z. (2019), "Nonlinear primary and super-harmonic resonances of functionally graded carbon nanotube reinforced composite beams", Int. J. Mech. Sci., 153-154, 321-340. https://doi.org/10.1016/j.ijmecsci.2019.02.015.
  63. Xu, X., Zhang, C., Khan, A., Sebaey, T.A. and Alkhedher, M. (2021), "Free vibrations of rotating CNTRC beams in thermal environment", Case Stud. Therm. Eng., 28, 101355. https://doi.org/10.1016/j.csite.2021.101355.
  64. Yas, M.H. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Pres. Ves. Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012.
  65. Zhang, D.G. (2014), "Thermal post-buckling and nonlinear vibration analysis of FGM beams based on physical neutral surface and high order shear deformation theory", Meccanica, 49(2), 283-293. https://doi.org/10.1007/s11012-013-9793-9.
  66. Zhang, L.W., Song, Z.G. and Liew, K.M. (2015), "State-space levy method for vibration analysis of FG-CNT composite plates subjected to in-plane loads based on higher-order shear deformation theory", Compos. Struct., 134, 989-1003. https://doi.org/10.1016/j.compstruct.2015.08.138.
  67. Zhao, P. and Shi, G. (2011), "Study of poisson ratios of single-walled carbon nanotubes based on an improved molecular structural mechanics model", Comput. Mater. Continua, 22(2), 147-168. https://doi.org/10.3970/cmc.2011.022.147.
  68. Zhou, T. and Song, Y. (2019), "Three-dimensional nonlinear bending analysis of FG-CNTs reinforced composite plates using the element-free galerkin method based on the S-R decomposition theorem", Compos. Struct., 207, 519-530. https://doi.org/10.1016/j.compstruct.2018.09.026.
  69. Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94(4), 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010.