DOI QR코드

DOI QR Code

Investigating the performance of polymer cement resistance in football stadium construction

  • Received : 2022.04.24
  • Accepted : 2023.03.12
  • Published : 2023.03.25

Abstract

New techniques, technologies, and materials should be used to design and build sports stadiums. Since this century, much progress has been made in covering the roofs of sports stadiums, and the possibility of accurate computer calculation has been provided for stadiums, so by choosing a new structure, we can double the beauty and resistance of these stadiums. A stadium has an excellent and valuable design when its structure, shell, building, materials, and joinery follow a high architectural idea at all levels and scales. This article examines the mechanical performance of polymer cement strength in the construction of football stadiums, along with their structural knowledge in the form of the best examples in the world. Portland cement is one of the most used materials for constructing football stadiums. However, its production requires spending a lot of money, wasting energy, and damaging the environment. Considering the disadvantages in the production and consumption of concrete in different environments, it is necessary to find alternative materials. It should be used with cheaper, simpler technology, abundant primary resources, energy saving, less environmental damage, and better chemical and physical properties in concrete. High-strength concrete technology is considered a new development in the construction industry of concrete structures. In hardened concrete, strength and durability are two main factors, and as the compressive strength of concrete increases, concrete becomes more brittle. As a result, its tensile strength does not increase in proportion to the increase in compressive strength and has less strain tolerance. For this reason, the need to use is evident from the fibers in high-strength concrete. Fibers are used in concrete to increase tensile strength, prevent crack propagation, and significantly increase softness. The increase with the change of these resistances depends on the strength of concrete without fibers, the shape of fibers, and the percentage of fibers. This cement is obtained from the wastes of chemical and petrochemical industries and the wastes from coal combustion, which have the properties mentioned as substitutes for Portland cement.

Keywords

References

  1. Adamian, A., Safari, K.H., Sheikholeslami, M., Habibi, M., Al-Furjan, M. and Chen, G. (2020), "Critical Temperature and Frequency Characteristics of GPLs-Reinforced Composite Doubly Curved Panel", Appl. Sci., 10(9), 3251. https://doi.org/10.3390/app10093251
  2. Aiswarya, S., Awasthi, P. and Banerjee, S.S. (2022), "Self-healing thermoplastic elastomeric materials: Challenges, opportunities and new approaches", Eur. Polym. J., 181, 111658. https://doi.org/10.1016/j.eurpolymj.2022.111658
  3. Al-Furjan, M., Dehini, R., Khorami, M., Habibi, M. and won Jung, D. (2020a), "On the dynamics of the ultra-fast rotating cantilever orthotropic piezoelectric nanodisk based on nonlocal strain gradient theory", Compos. Struct., 112990. https://doi.org/10.1016/j.compstruct.2020.112990
  4. Al-Furjan, M., Fereidouni, M., Habibi, M., Abd Ali, R., Ni, J. and Safarpour, M. (2020b), "Influence of in-plane loading on the vibrations of the fully symmetric mechanical systems via dynamic simulation and generalized differential quadrature framework", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01177-7
  5. Alipour, M., Torabi, M.A., Sareban, M., Lashini, H., Sadeghi, E., Fazaeli, A., Habibi, M. and Hashemi, R. (2020), "Finite element and experimental method for analyzing the effects of martensite morphologies on the formability of DP steels", Mech. Based Des. Struct. Mach., 48(5), 525-541. https://doi.org/10.1080/15397734.2019.1633343
  6. Azimi, M., Mirjavadi, S.S., Shafiei, N. and Hamouda, A.M.S. (2017), "Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam", Appl. Phys. A, 123, 1-15. https://doi.org/10.1007/s00339-016-0712-5
  7. Azimi, M., Mirjavadi, S.S., Shafiei, N., Hamouda, A.M.S. and Davari, E. (2018), "Vibration of rotating functionally graded Timoshenko nano-beams with nonlinear thermal distribution", Mech. Adv. Mater. Struct., 25(6), 467-480. https://doi.org/10.1080/15376494.2017.1285455
  8. Bin, Y., Mine, M., Koganemaru, A., Jiang, X. and Matsuo, M. (2006), "Morphology and mechanical and electrical properties of oriented PVA-VGCF and PVA-MWNT composites", Polymer, 47(4), 1308-1317. https://doi.org/10.1016/j.polymer.2005.12.032
  9. Bisht, K. and Ramana, P.V. (2017), "Evaluation of mechanical and durability properties of crumb rubber concrete", Constr. Build. Mater., 155, 811-817. https://doi.org/10.1016/j.conbuildmat.2017.08.131
  10. Cao, Z., Niu, B., Zong, G. and Xu, N. (2023), "Small-gain technique-based adaptive output constrained control design of switched networked nonlinear systems via event-triggered communications", Nonlinear Anal.: Hybrid Syst., 47, 101299. https://doi.org/10.1016/j.nahs.2022.101299
  11. Che, J., Jing, M., Liu, D., Wang, K. and Fu, Q. (2018), "Largely enhanced thermal conductivity of HDPE/boron nitride/carbon nanotubes ternary composites via filler network-network synergy and orientation", Compos. Part A: Appl. Sci. Manuf., 112, 32-39. https://doi.org/10.1016/j.compositesa.2018.05.016
  12. Chen, X.-F. and Jiao, C.-J. (2022), "Effect of physical properties of construction wastes based composite photocatalysts on the sulfur dioxide degradation: Experimental investigation and mechanism analysis", Case Stud. Constr. Mater., 17, e01237. https://doi.org/10.1016/j.cscm.2022.e01237
  13. Chen, X.-F., Kou, S.-C. and Xing, F. (2021), "Mechanical and durable properties of chopped basalt fiber reinforced recycled aggregate concrete and the mathematical modeling", Constr. Build. Mater., 298, 123901. https://doi.org/10.1016/j.conbuildmat.2021.123901
  14. Chen, F., Chen, J., Duan, R., Habibi, M. and Khadimallah, M.A. (2022), "Investigation on dynamic stability and aeroelastic characteristics of composite curved pipes with any yawed angle", Compos. Struct., 115195. https://doi.org/10.1016/j.compstruct.2022.115195
  15. Cheng, F., Wang, H., Zhang, L., Ahmad, A.M. and Xu, N. (2022), "Decentralized adaptive neural two-bit-triggered control for nonstrict-feedback nonlinear systems with actuator failures", Neurocomputing, 500, 856-867. https://doi.org/10.1016/j.neucom.2022.05.082
  16. Dai, Z., Zhang, L., Bolandi, S.Y. and Habibi, M. (2021), "On the vibrations of the non-polynomial viscoelastic composite open-type shell under residual stresses", Compos. Struct., 113599. https://doi.org/10.1016/j.compstruct.2021.113599
  17. Damidot, D., Stronach, S., Kindness, A., Atkins, M. and Glasser, F.P. (1994), "Thermodynamic investigation of the CaO Al2O3 CaCO3 H2O closed system at 25℃ and the influence of Na2O", Cement Concrete Res., 24(3), 563-572. https://doi.org/10.1016/0008-8846(94)90145-7
  18. Danish, A., Mosaberpanah, M.A., Tuladhar, R., Salim, M.U., Yaqub, M.A. and Ahmad, N. (2022), "Effect of cenospheres on the engineering properties of lightweight cementitious composites: A comprehensive review", J. Build. Eng., 49, 104016. https://doi.org/10.1016/j.jobe.2022.104016
  19. Du, X., Li, Y., Huangfu, B., Si, Z., Huang, L., Wen, L. and Ke, M. (2023), "Modification mechanism of combined nanomaterials on high performance concrete and optimization of nanomaterial content", J. Build. Eng., 64, 105648. https://doi.org/10.1016/j.jobe.2022.105648
  20. Ebrahimi, F. and Shafiei, N. (2016), "Application of Eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams", Smart Struct. Syst., Int. J., 17(5), 837-857. https://doi.org/10.12989/sss.2016.17.5.837
  21. Ebrahimi, F. and Shafiei, N. (2017), "Influence of initial shear stress on the vibration behavior of single-layered graphene sheets embedded in an elastic medium based on Reddy's higher-order shear deformation plate theory", Mech. Adv. Mater. Struct., 24(9), 761-772. https://doi.org/10.1080/15376494.2016.1196781
  22. Ebrahimi, F., Shafiei, N., Kazemi, M. and Mousavi Abdollahi, S.M. (2017), "Thermo-mechanical vibration analysis of rotating nonlocal nanoplates applying generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(15), 1257-1273. https://doi.org/10.1080/15376494.2016.1227499
  23. Ebrahimi, F., Habibi, M. and Safarpour, H. (2019), "On modeling of wave propagation in a thermally affected GNP-reinforced imperfect nanocomposite shell", Eng. Comput., 35(4), 1375-1389. https://doi.org/10.1007/s00366-018-0669-4
  24. Ebrahimi, F., Hashemabadi, D., Habibi, M. and Safarpour, H. (2020), "Thermal buckling and forced vibration characteristics of a porous GNP reinforced nanocomposite cylindrical shell", Microsyst. Technol., 26(2), 461-473. https://doi.org/10.1007/s00542-019-04542-9
  25. Ehyaei, J., Akbarshahi, A. and Shafiei, N. (2017), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", Adv. Nano Res., Int. J., 5(2), 141. https://doi.org/10.12989/anr.2017.5.2.141
  26. Esmailpoor Hajilak, Z., Pourghader, J., Hashemabadi, D., Sharifi Bagh, F., Habibi, M. and Safarpour, H. (2019), "Multilayer GPLRC composite cylindrical nanoshell using modified strain gradient theory", Mech. Based Des. Struct. Mach., 47(5), 521-545. https://doi.org/10.1080/15397734.2019.1566743
  27. Fang, Q., Wang, G., Du, J., Liu, Y. and Zhou, M. (2023), "Prediction of tunnelling induced ground movement in clay using principle of minimum total potential energy", Tunnell. Undergr. Space Technol., 131, 104854. https://doi.org/10.1016/j.tust.2022.104854
  28. Gartner, E. and Hirao, H. (2015), "A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete", Cement Concrete Res., 78, 126-142. https://doi.org/10.1016/j.cemconres.2015.04.012
  29. Gartner, E. and Sui, T. (2018), "Alternative cement clinkers", Cement Concrete Res., 114, 27-39. https://doi.org/10.1016/j.cemconres.2017.02.002
  30. Ghadiri, M. and Shafiei, N. (2016a), "Nonlinear bending vibration of a rotating nanobeam based on nonlocal Eringen's theory using differential quadrature method", Microsyst. Technol., 22(12), 2853-2867. https://doi.org/10.1007/s00542-015-2662-9
  31. Ghadiri, M. and Shafiei, N. (2016b), "Vibration analysis of rotating functionally graded Timoshenko microbeam based on modified couple stress theory under different temperature distributions", Acta Astronautica, 121, 221-240. https://doi.org/10.1016/j.actaastro.2016.01.003
  32. Ghadiri, M. and Shafiei, N. (2017), "Vibration analysis of a nano-turbine blade based on Eringen nonlocal elasticity applying the differential quadrature method", J. Vib. Control, 23(19), 3247-3265. https://doi.org/10.1177/1077546315627
  33. Ghadiri, M., Hosseini, S.H.S. and Shafiei, N. (2016a), "A power series for vibration of a rotating nanobeam with considering thermal effect", Mech. Adv. Mater. Struct., 23(12), 1414-1420. https://doi.org/10.1080/15376494.2015.1091527
  34. Ghadiri, M., Shafiei, N. and Akbarshahi, A. (2016b), "Influence of thermal and surface effects on vibration behavior of nonlocal rotating Timoshenko nanobeam", Applied Physics A, 122, 1-19. https://doi.org/10.1007/s00339-016-0196-3
  35. Ghadiri, M., Shafiei, N. and Alireza Mousavi, S. (2016c), "Vibration analysis of a rotating functionally graded tapered microbeam based on the modified couple stress theory by DQEM", Appl. Phys. A, 122, 1-14. https://doi.org/10.1007/s00339-016-0364-5
  36. Ghadiri, M., Shafiei, N., Salekdeh, S.H., Mottaghi, P. and Mirzaie, T. (2016d), "Investigation of the dental implant geometry effect on stress distribution at dental implant-bone interface", J. Brazil. Soc. Mech. Sci. Eng., 38, 335-343. https://doi.org/10.1007/s40430-015-0472-8
  37. Ghadiri, M., Mahinzare, M., Shafiei, N. and Ghorbani, K. (2017a), "On size-dependent thermal buckling and free vibration of circular FG Microplates in thermal environments", Microsyst. Technol., 23, 4989-5001. https://doi.org/10.1007/s00542-017-3308-x
  38. Ghadiri, M., Shafiei, N. and Alavi, H. (2017b), "Thermo-mechanical vibration of orthotropic cantilever and propped cantilever nanoplate using generalized differential quadrature method", Mech. Adv. Mater. Struct., 24(8), 636-646. https://doi.org/10.1080/15376494.2016.1196770
  39. Ghadiri, M., Shafiei, N. and Alavi, S.H. (2017c), "Vibration Analysis of a Rotating Nanoplate Using Nonlocal Elasticity Theory", J. Solid Mech., 9(2), 319-337. https://jsm.arak.iau.ir/article_531824_c4e4e72f55b3a3a2cde7fda2f9b20ed3.pdf
  40. Ghadiri, M., Shafiei, N. and Babaei, R. (2017d), "Vibration of a rotary FG plate with consideration of thermal and Coriolis effects", Steel Compos. Struct., Int. J., 25(2), 197-207. https://doi.org/10.12989/scs.2017.25.2.197
  41. Ghadiri, M., Shafiei, N. and Safarpour, H. (2017e), "Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen's nonlocal elasticity", Microsyst. Technol., 23, 1045-1065. https://doi.org/10.1007/s00542-016-2822-6
  42. Grant, S.A., Boitnott, G.E., Korhonen, C.J. and Sletten, R.S. (2006), "Effect of temperature on hydration kinetics and polymerization of tricalcium silicate in stirred suspensions of CaO-saturated solutions", Cement Concrete Res., 36(4), 671-677. https://doi.org/10.1016/j.cemconres.2005.10.001
  43. Gu, J., Lv, Z., Wu, Y., Guo, Y., Tian, L., Qiu, H., Li, W. and Zhang, Q. (2017), "Dielectric thermally conductive boron nitride/polyimide composites with outstanding thermal stabilities via in-situ polymerization-electrospinning-hot press method", Compos. Part A: Appl. Sci. Manuf., 94, 209-216. https://doi.org/10.1016/j.compositesa.2016.12.014
  44. Guo, Z., Xu, Z., Liu, C., Ni, Y., Luo, X., Chen, G. and Gao, J. (2023), "Synergistic effect of nanosilica and high-volume granulated blast furnace slag on pore structure and mechanical properties of cementitious materials", J. Build. Eng., 67, 106003. https://doi.org/10.1016/j.jobe.2023.106003
  45. Habibi, M., Hashemi, R., Sadeghi, E., Fazaeli, A., Ghazanfari, A. and Lashini, H. (2016), "Enhancing the mechanical properties and formability of low carbon steel with dual-phase microstructures", J. Mater. Eng. Perform., 25(2), 382-389. https://doi.org/10.1007/s11665-016-1882-1
  46. Habibi, M., Hashemi, R., Ghazanfari, A., Naghdabadi, R. and Assempour, A. (2018a), "Forming limit diagrams by including the M-K model in finite element simulation considering the effect of bending", Proceedings of the Institution of Mechanical Engineers, Part L: J. Mater.: Des. Applicat., 232(8), 625-636. https://doi.org/10.1177/1464420716642258
  47. Habibi, M., Hashemi, R., Tafti, M.F. and Assempour, A. (2018b), "Experimental investigation of mechanical properties, formability and forming limit diagrams for tailor-welded blanks produced by friction stir welding", J. Manuf. Process., 31, 310-323. https://doi.org/10.1016/j.jmapro.2017.11.009
  48. Habibi, M., Hashemabadi, D. and Safarpour, H. (2019a), "Vibration analysis of a high-speed rotating GPLRC nanostructure coupled with a piezoelectric actuator", Eur. Phys. J. Plus, 134(6), 307. https://doi.org/10.1140/epjp/i2019-12742-7
  49. Habibi, M., Mohammadgholiha, M. and Safarpour, H. (2019b), "Wave propagation characteristics of the electrically GNP-reinforced nanocomposite cylindrical shell", J. Brazil. Soc. Mech. Sci. Eng., 41(5), 221. https://doi.org/10.1007/s40430-019-1715-x
  50. Habibi, M., Mohammadi, A., Safarpour, H., Shavalipour, A. and Ghadiri, M. (2019c), "Wave propagation analysis of the laminated cylindrical nanoshell coupled with a piezoelectric actuator", Mech. Based Des. Struct. Mach., 1-19. https://doi.org/10.1080/15397734.2019.1697932
  51. Habibi, M., Taghdir, A. and Safarpour, H. (2019d), "Stability analysis of an electrically cylindrical nanoshell reinforced with graphene nanoplatelets", Compos. Part B: Eng., 175, 107125. https://doi.org/10.1016/j.compositesb.2019.107125
  52. Hamidi, F., Valizadeh, A. and Aslani, F. (2022), "The effect of scoria, perlite and crumb rubber aggregates on the fresh and mechanical properties of geopolymer concrete", Structures, 38, 895-909. https://doi.org/10.1016/j.istruc.2022.02.031
  53. Hashemi, H.R., Alizadeh, A.A., Oyarhossein, M.A., Shavalipour, A., Makkiabadi, M. and Habibi, M. (2019), "Influence of imperfection on amplitude and resonance frequency of a reinforcement compositionally graded nanostructure", Waves Random Complex Media, 1-27. https://doi.org/10.1080/17455030.2019.1662968
  54. Hassani Niaki, M., Ghorbanzadeh Ahangari, M. and Pashaian, M. (2022), "A material-independent deep learning model to predict the tensile strength of polymer concrete", Compos. Commun., 36, 101400. https://doi.org/10.1016/j.coco.2022.101400
  55. Hou, F., Wu, S., Moradi, Z. and Shafiei, N. (2021), "The computational modeling for the static analysis of axially functionally graded micro-cylindrical imperfect beam applying the computer simulation", Eng. Comput., 1-19. https://doi.org/10.1007/s00366-021-01456-x
  56. Huang, X., Zhang, Y., Moradi, Z. and Shafiei, N. (2022), "Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform microtube", Eng. Comput., 38, 2481-2498. https://doi.org/10.1007/s00366-021-01395-7
  57. Hudson, J.A., Cardenas, H., Matthews, J. and Alam, S. (2023), "Performance evaluation of deteriorated and rehabilitated corrugated metal pipe culverts using multiphysics simulation", Tunnell. Undergr. Space Technol., 131, 104827. https://doi.org/10.1016/j.tust.2022.104827
  58. Jafari, K. and Toufigh, V. (2017), "Experimental and analytical evaluation of rubberized polymer concrete", Constr. Build. Mater., 155, 495-510. https://doi.org/10.1016/j.conbuildmat.2017.08.097
  59. Jennings, H.M. (2000), "A model for the microstructure of calcium silicate hydrate in cement paste", Cement Concrete Res., 30(1), 101-116. https://doi.org/10.1016/S0008-8846(99)00209-4
  60. Jiao, J., Ghoreishi, S.-m., Moradi, Z. and Oslub, K. (2021), "Coupled particle swarm optimization method with genetic algorithm for the static-dynamic performance of the magneto-electro-elastic nanosystem", Eng. Comput. https://doi.org/10.1007/s00366-021-01391-x
  61. Jo, B.-W., Kim, C.-H., Tae, G.-h. and Park, J.-B. (2007), "Characteristics of cement mortar with nano-SiO2 particles", Constr. Build. Mater., 21(6), 1351-1355. https://doi.org/10.1016/j.conbuildmat.2005.12.020
  62. Khalid, M.Y., Arif, Z.U., Noroozi, R., Zolfagharian, A. and Bodaghi, M. (2022), "4D printing of shape memory polymer composites: A review on fabrication techniques, applications, and future perspectives", J. Manuf. Process., 81, 759-797. https://doi.org/10.1016/j.jmapro.2022.07.035
  63. Li, Y., Li, S., Guo, K., Fang, X. and Habibi, M. (2020), "On the modeling of bending responses of graphene-reinforced higher order annular plate via two-dimensional continuum mechanics approach", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01166-w
  64. Li, P., Yang, M. and Wu, Q. (2021), "Confidence interval based distributionally robust real-time economic dispatch approach considering wind power accommodation risk", IEEE Transact. Sustain. Energy, 12(1), 58-69. https://doi.org/10.1109/TSTE.2020.2978634
  65. Lothenbach, B., Matschei, T., Moschner, G. and Glasser, F.P. (2008), "Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement", Cement Concrete Res., 38(1), 1-18. https://doi.org/10.1016/j.cemconres.2007.08.017
  66. Lu, Z., Kong, X., Zhang, C., Jansen, D., Neubauer, J. and Goetz-Neunhoeffer, F. (2019), "Effects of two oppositely charged colloidal polymers on cement hydration", Cement Concrete Compos., 96, 66-76. https://doi.org/10.1016/j.cemconcomp.2018.11.014
  67. Merlin, F., Guitouni, H., Mouhoubi, H., Mariot, S., Vallee, F. and Van Damme, H. (2005), "Adsorption and heterocoagulation of nonionic surfactants and latex particles on cement hydrates", J. Colloid Interf. Sci., 281(1), 1-10. https://doi.org/10.1016/j.jcis.2004.08.042
  68. Mirjavadi, S.S., Matin, A., Shafiei, N., Rabby, S. and Mohasel Afshari, B. (2017a), "Thermal buckling behavior of two-dimensional imperfect functionally graded microscale-tapered porous beam", J. Thermal Stress., 40(10), 1201-1214. https://doi.org/10.1080/01495739.2017.1332962
  69. Mirjavadi, S.S., Rabby, S., Shafiei, N., Afshari, B.M. and Kazemi, M. (2017b), "On size-dependent free vibration and thermal buckling of axially functionally graded nanobeams in thermal environment", Appl. Phys. A, 123, 1-10. https://doi.org/10.1007/s00339-017-0918-1
  70. Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A.M.S. and Kazemi, M. (2017c), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., Int. J., 25(4), 415-426. https://doi.org/10.12989/scs.2017.25.4.415
  71. Mirjavadi, S.S., Mohasel Afshari, B., Khezel, M., Shafiei, N., Rabby, S. and Kordnejad, M. (2018a), "Nonlinear vibration and buckling of functionally graded porous nanoscaled beams", J. Brazil. Soc. Mech. Sci. Eng., 40, 1-12. https://doi.org/10.1007/s40430-018-1272-8
  72. Mirjavadi, S.S., Mohasel Afshari, B., Shafiei, N., Rabby, S. and Kazemi, M. (2018b), "Effect of temperature and porosity on the vibration behavior of two-dimensional functionally graded micro-scale Timoshenko beam", J. Vib. Control, 24(18), 4211-4225. https://doi.org/10.1177/1077546317721
  73. Moayedi, H., Habibi, M., Safarpour, H., Safarpour, M. and Foong, L. (2019), "Buckling and frequency responses of a graphene nanoplatelet reinforced composite microdisk", Int. J. Appl. Mech., 11(10), 1950102. https://doi.org/10.1142/S1758825119501023
  74. Moayedi, H., Aliakbarlou, H., Jebeli, M., Noormohammadiarani, O., Habibi, M., Safarpour, H. and Foong, L. (2020a), "Thermal buckling responses of a graphene reinforced composite micropanel structure", Int. J. Appl. Mech., 12(01), 2050010. https://doi.org/10.1142/S1758825120500106
  75. Moayedi, H., Ebrahimi, F., Habibi, M., Safarpour, H. and Foong, L.K. (2020b), "Application of nonlocal strain-stress gradient theory and GDQEM for thermo-vibration responses of a laminated composite nanoshell", Eng. Comput., 1-16. https://doi.org/10.1007/s00366-020-01002-1
  76. Moradi, Z., Davoudi, M., Ebrahimi, F. and Ehyaei, A.F. (2021), "Intelligent wave dispersion control of an inhomogeneous micro-shell using a proportional-derivative smart controller", Waves Random Complex Media, 1-24. https://doi.org/10.1080/17455030.2021.1926572
  77. Mousavi, S.M., Shafiei, N. and Dadvand, A. (2017), "Numerical simulation of subsonic turbulent flow over NACA0012 airfoil: evaluation of turbulence models", Sigma J. Eng. Natural Sci., 35(1), 133-155. https://dergipark.org.tr/en/pub/sigma/issue/65585/1016455 1016455
  78. Nazari, A. and Riahi, S. (2011), "RETRACTED: Splitting tensile strength of concrete using ground granulated blast furnace slag and SiO2 nanoparticles as binder", Energy Build., 43(4), 864-872. https://doi.org/10.1016/j.enbuild.2010.12.006
  79. Omidi, S., Oskooee, M.B. and Shafiei, N. (2013), "Finite element analysis of an ultra-fine grained Titanium dental implant covered by different thicknesses of hydroxyapatite layer", Indian J. Dentist., 4(1), 1-4. https://doi.org/10.1016/j.ijd.2012.10.002
  80. Oyarhossein, M.A., Alizadeh, A.A., Habibi, M., Makkiabadi, M., Daman, M., Safarpour, H. and Jung, D.W. (2020), "Dynamic response of the nonlocal strain-stress gradient in laminated polymer composites microtubes", Scientific Reports, 10(1), 1-19. https://doi.org/10.1038/s41598-020-61855-w
  81. Pacheco-Torgal, F., Miraldo, S., Ding, Y. and Labrincha, J.A. (2013), "Targeting HPC with the help of nanoparticles: An overview", Constr. Build. Mater., 38, 365-370. https://doi.org/10.1016/j.conbuildmat.2012.08.013
  82. Pani, L., Francesconi, L., Rombi, J., Mistretta, F., Sassu, M. and Stochino, F. (2020), "Effect of parent concrete on the performance of recycled aggregate concrete", 12(22), 9399. https://doi.org/10.3390/su12229399
  83. Pourjabari, A., Hajilak, Z.E., Mohammadi, A., Habibi, M. and Safarpour, H. (2019), "Effect of porosity on free and forced vibration characteristics of the GPL reinforcement composite nanostructures", Comput. Mathe. Applicat., 77(10), 2608-2626. https://doi.org/10.1016/j.camwa.2018.12.041
  84. Ravichandran, D., Xu, W., Kakarla, M., Jambhulkar, S., Zhu, Y. and Song, K. (2021), "Multiphase direct ink writing (MDIW) for multilayered polymer/nanoparticle composites", Additive Manuf., 47, 102322. https://doi.org/10.1016/j.addma.2021.102322
  85. Relis, M. and Soroka, I. (1980), "Limiting values for density, expansion and intrinsic shrinkage in hydrated Portland cement", Cement Concrete Res., 10(4), 499-508. https://doi.org/10.1016/0008-8846(80)90094-0
  86. Safarpour, H., Hajilak, Z.E. and Habibi, M. (2019a), "A size-dependent exact theory for thermal buckling, free and forced vibration analysis of temperature dependent FG multilayer GPLRC composite nanostructures restring on elastic foundation", Int. J. Mech. Mater. Des., 15(3), 569-583. https://doi.org/10.1007/s10999-018-9431-8
  87. Safarpour, H., Pourghader, J. and Habibi, M. (2019b), "Influence of spring-mass systems on frequency behavior and critical voltage of a high-speed rotating cantilever cylindrical threedimensional shell coupled with piezoelectric actuator", J. Vib. Control, 25(9), 1543-1557. https://doi.org/10.1177/1077546319828465
  88. Samuvel Raj, R., Prince Arulraj, G., Anand, N., Kanagaraj, B., Lubloy, E. and Naser, M.Z. (2023), "Nanomaterials in geopolymer composites: A review", Develop. Built Environ., 13, 100114. https://doi.org/10.1016/j.dibe.2022.100114
  89. Shafiei, N. and Kazemi, M. (2017a), "Buckling analysis on the bidimensional functionally graded porous tapered nano-/micro-scale beams", Aerosp. Sci. Technol., 66, 1-11. https://doi.org/10.1016/j.ast.2017.02.019
  90. Shafiei, N. and Kazemi, M. (2017b), "Nonlinear buckling of functionally graded nano-/micro-scaled porous beams", Compos. Struct., 178, 483-492. https://doi.org/10.1016/j.compstruct.2017.07.045
  91. Shafiei, N. and She, G.-L. (2018), "On vibration of functionally graded nano-tubes in the thermal environment", Int. J. Eng. Sci., 133, 84-98. https://doi.org/10.1016/j.ijengsci.2018.08.004
  92. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016a), "Comparison of modeling of the rotating tapered axially functionally graded Timoshenko and Euler-Bernoulli microbeams", Physica E: Low-dimens. Syst. Nanostr., 83, 74-87. https://doi.org/10.1016/j.physe.2016.04.011
  93. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016b), "Nonlinear vibration behavior of a rotating nanobeam under thermal stress using Eringen's nonlocal elasticity and DQM", Appl. Phys. A, 122, 1-18. https://doi.org/10.1007/s00339-016-0245-y
  94. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016c), "Nonlinear vibration of axially functionally graded tapered microbeams", Int. J. Eng. Sci., 102, 12-26. https://doi.org/10.1016/j.ijengsci.2016.02.007
  95. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016d), "On size-dependent vibration of rotary axially functionally graded microbeam", Int. J. Eng. Sci., 101, 29-44. https://doi.org/10.1016/j.ijengsci.2015.12.008
  96. Shafiei, N., Kazemi, M., Safi, M. and Ghadiri, M. (2016e), "Nonlinear vibration of axially functionally graded non-uniform nanobeams", Int. J. Eng. Sci., 106, 77-94. https://doi.org/10.1016/j.ijengsci.2016.05.009
  97. Shafiei, N., Mousavi, A. and Ghadiri, M. (2016f), "On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams", Int. J. Eng. Sci., 106, 42-56. https://doi.org/10.1016/j.ijengsci.2016.05.007
  98. Shafiei, N., Mousavi, A. and Ghadiri, M. (2016g), "Vibration behavior of a rotating non-uniform FG microbeam based on the modified couple stress theory and GDQEM", Compos. Struct., 149, 157-169. https://doi.org/10.1016/j.compstruct.2016.04.024
  99. Shafiei, N., Ghadiri, M., Makvandi, H. and Hosseini, S.A. (2017a), "Vibration analysis of Nano-Rotor's Blade applying Eringen nonlocal elasticity and generalized differential quadrature method", Appl. Mathe. Modell., 43, 191-206. https://doi.org/10.1016/j.apm.2016.10.061
  100. Shafiei, N., Kazemi, M. and Fatahi, L. (2017b), "Transverse vibration of rotary tapered microbeam based on modified couple stress theory and generalized differential quadrature element method", Mech. Adv. Mater. Struct., 24(3), 240-252. https://doi.org/10.1080/15376494.2015.1128025
  101. Shafiei, N., Mirjavadi, S.S., Afshari, B.M., Rabby, S. and Hamouda, A.M.S. (2017c), "Nonlinear thermal buckling of axially functionally graded micro and nanobeams", Compos. Struct., 168, 428-439. https://doi.org/10.1016/j.compstruct.2017.02.048
  102. Shafiei, N., Mirjavadi, S.S., MohaselAfshari, B., Rabby, S. and Kazemi, M. (2017d), "Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams", Comput. Methods Appl. Mech. Eng., 322, 615-632. https://doi.org/10.1016/j.cma.2017.05.007
  103. Shafiei, N., Ghadiri, M. and Mahinzare, M. (2019), "Flapwise bending vibration analysis of rotary tapered functionally graded nanobeam in thermal environment", Mech. Adv. Mater. Struct., 26(2), 139-155. https://doi.org/10.1080/15376494.2017.1365982
  104. Shafiei, N., Hamisi, M. and Ghadiri, M. (2020), "Vibration analysis of rotary tapered axially functionally graded Timoshenko nanobeam in thermal environment", J. Solid Mech., 12(1), 16-32. https://jsm.arak.iau.ir/article_670258.html
  105. Shahabinejad, E., Shafiei, N. and Ghadiri, M. (2018), "Influence of temperature change on modal analysis of rotary functionally graded nano-beam in thermal environment", J. Solid Mech., 10(4), 779-803. https://jsm.arak.iau.ir/article_545719.html
  106. Shanmuganathan, R., Rath, B., Almoallim, H.S., Alahmadi, T.A., Jhanani, G.K., Lan Chi, N.T., Praveenkumar, T.R. and S, M. (2023), "Utilisation of persistent chemical pollutant incorporating with nanoparticles to modify the properties of geopolymer and cement concrete", Environ. Res., 219, 114965. https://doi.org/10.1016/j.envres.2022.114965
  107. Shariati, A., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020), "On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams", Materials, 13(7), 1707. https://doi.org/10.3390/ma13071707
  108. Shen, D., Liu, C., Wen, C., Kang, J., Li, M. and Jiang, H. (2023), "Restrained cracking failure behavior of concrete containing MgO compound expansive agent under adiabatic condition at early age", Cement Concrete Compos., 135, 104825. https://doi.org/10.1016/j.cemconcomp.2022.104825
  109. Shivanian, E., Ghadiri, M. and Shafiei, N. (2017), "Influence of size effect on flapwise vibration behavior of rotary microbeam and its analysis through spectral meshless radial point interpolation", Appl. Phys. A, 123, 1-16. https://doi.org/10.1007/s00339-017-0955-9
  110. Si, Z., Yang, M., Yu, Y. and Ding, T. (2021), "Photovoltaic power forecast based on satellite images considering effects of solar position", Appl. Energy, 302, 117514. https://doi.org/10.1016/j.apenergy.2021.117514
  111. Syachrani, S., Jeong, H.S., Rai, V., Chae, M.J. and Iseley, T. (2010), "A risk management approach to safety assessment of trenchless technologies for culvert rehabilitation", Tunnell. Undergr. Space Technol., 25(6), 681-688. https://doi.org/10.1016/j.tust.2010.05.005
  112. Tabish, M., Zaheer, M.M. and Baqi, A. (2023), "Effect of nano-silica on mechanical, microstructural and durability properties of cement-based materials: A review", J. Build. Eng., 65, 105676. https://doi.org/10.1016/j.jobe.2022.105676
  113. Tennis, P.D. and Jennings, H.M. (2000), "A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes", Cement Concrete Res., 30(6), 855-863. https://doi.org/10.1016/S0008-8846(00)00257-X
  114. Toufigh, V., Hosseinali, M. and Shirkhorshidi, S.M. (2016), "Experimental study and constitutive modeling of polymer concrete's behavior in compression", Constr. Build. Mater., 112, 183-190. https://doi.org/10.1016/j.conbuildmat.2016.02.100
  115. Tran, T.Q., Skariah Thomas, B., Zhang, W., Ji, B., Li, S. and Brand, A.S. (2022), "A comprehensive review on treatment methods for end-of-life tire rubber used for rubberized cementitious materials", Constr. Build. Mater., 359, 129365. https://doi.org/10.1016/j.conbuildmat.2022.129365
  116. Wang, D. and Wang, Q. (2022), "Clarifying and quantifying the immobilization capacity of cement pastes on heavy metals", Cement Concrete Res., 161, 106945. https://doi.org/10.1016/j.cemconres.2022.106945
  117. Wang, Y., Niu, B., Ahmad, A., Liu, Y., Wang, H., Zong, G. and Alsaadi, F. (2022), "Adaptive command filtered control for switched multi-input multi-output nonlinear systems with hysteresis inputs", Int. J. Adapt. Control Signal Process., 36(12), 3023-3042. https://doi.org/10.1002/acs.3501
  118. Wu, P., Yu, T., Chen, M. and Hui, D. (2022), "Effect of printing speed and part geometry on the self-deformation behaviors of 4D printed shape memory PLA using FDM", J. Manuf. Process., 84, 1507-1518. https://doi.org/10.1016/j.jmapro.2022.11.007
  119. Xu, W., Pan, G., Moradi, Z. and Shafiei, N. (2021), "Nonlinear forced vibration analysis of functionally graded non-uniform cylindrical microbeams applying the semi-analytical solution", Compos. Struct., 275, 114395. https://doi.org/10.1016/j.compstruct.2021.114395
  120. Yang, L., Zhang, L. and Li, C. (2020), "Bridging boron nitride nanosheets with oriented carbon nanotubes by electrospinning for the fabrication of thermal conductivity enhanced flexible nanocomposites", Compos. Sci. Technol., 200, 108429. https://doi.org/10.1016/j.compscitech.2020.108429
  121. Zare, R., Najaafi, N., Habibi, M., Ebrahimi, F. and Safarpour, H. (2020), "Influence of imperfection on the smart control frequency characteristics of a cylindrical sensor-actuator GPLRC cylindrical shell using a proportional-derivative smart controller", Smart Struct. Syst., Int. J., 26(4), 469-480. https://doi.org/10.12989/sss.2020.26.4.469
  122. Zhang, Z., Li, W. and Yang, J. (2021), "Analysis of stochastic process to model safety risk in construction industry", J. Civil Eng. Manage., 27(2), 87-99. https://doi.org/10.3846/jcem.2021.14108
  123. Zhang, C., Zhu, Z., Wang, S. and Zhang, J. (2023), "Macro-micro mechanical properties and reinforcement mechanism of alkali-resistant glass fiber-reinforced concrete under alkaline environments", Constr. Build. Mater., 368, 130365. https://doi.org/10.1016/j.conbuildmat.2023.130365
  124. Zhao, H., Li, X., Chen, X., Qiao, C., Xu, W., Wang, P. and Song, H. (2021a), "Microstructure evolution of cement mortar containing MgO-CaO blended expansive agent and temperature rising inhibitor under multiple curing temperatures", Constr. Build. Mater., 278, 122376. https://doi.org/10.1016/j.conbuildmat.2021.122376
  125. Zhao, Y., Moradi, Z., Davoudi, M. and Zhuang, J. (2021b), "Bending and stress responses of the hybrid axisymmetric system via state-space method and 3D-elasticity theory", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01242-1
  126. Zhao, Y., Tang, F., Zong, G., Zhao, X. and Xu, N. (2022), "Event-Based Adaptive Containment Control for Nonlinear Multiagent Systems With Periodic Disturbances", IEEE Transact. Circuits Syst. II: Express Briefs, 69(12), 5049-5053. https://doi.org/10.1109/TCSII.2022.3200053
  127. Zheng, Y., Zhang, Y., Zhuo, J., Zhang, Y. and Wan, C. (2022), "A review of the mechanical properties and durability of basalt fiber-reinforced concrete", Constr. Build. Mater., 359, 129360. https://doi.org/10.1016/j.conbuildmat.2022.129360