DOI QR코드

DOI QR Code

Effect of curing on alkalinity and strength of cement-mortar incorporating palm oil fuel ash

  • Payam Shafigh (Center for Building, Construction & Tropical Architecture (BuCTA), Faculty of Built Environment, University of Malaya) ;
  • Sumra Yousuf (Department of Building and Architectural Engineering, Faculty of Engineering & Technology, Bahauddin Zakariya University) ;
  • Belal Alsubari (Department of Civil Engineering, Faculty of Engineering, Miami College of Henan University) ;
  • Zainah Ibrahim (Department of Civil Engineering, Faculty of Engineering, University of Malaya)
  • 투고 : 2021.03.30
  • 심사 : 2023.03.10
  • 발행 : 2023.03.25

초록

Palm oil fuel ash (POFA) is a newly emerging pozzolanic material having high amount of silica content. Various forms of POFA were used in cement-based materials (CBMs) in replacement of cement in different dosages of low and high volume. Although, there are many researches on POFA to be used in concrete and mortar, however, this material was not practically used in the construction industry. Engineers and designers need to be confident to use any new developed materials by knowing all engineering properties at short and long terms. As durability concern, concrete pH value is one of the most important properties. Portland cement produces are alkaline initially, however, it may be reduced due to aging and its components. It is believed that by incorporation of supplementary cementitious materials in CBMs the pH value reduces due to utilization of Ca(OH)2 in pozzolanic reaction. This study is the first attempts to understand the pH value of mortars containing up to 30% POFA under different curing conditions and its changes with time. The results were also compared with the pH of ground granulated ballast furnace slag (GGBFS) and fly ash (FA) content mortars. In addition, the compressive strength of different mortars under different curing conditions were also studied. The results showed that the pH value of control mix (without cementitious materials) was more than all the blended cement mortars indifferent curing conditions at the same ages. However, there was a reducing trend in the pH value of all mortar mixes containing POFA.

키워드

과제정보

This work was financially supported by the faculty of Built Environment Research Grant, Grant No. GPF007F2019. The author, Sumra Yousuf, also acknowledges the Bahauddin Zakariya University for funding.

참고문헌

  1. Ahmad, S. (2003), "Reinforcement corrosion in concrete structures, its monitoring and service life prediction--a review", Cement Concrete Compos., 25(4), 459-471. https://doi.org/10.1016/S0958-9465(02)00086-0
  2. Aitcin, P.C. (2000), "Cements of yesterday and today: Concrete of tomorrow", Cement Concrete Res., 30(9), 1349-1359. https://doi.org/10.1016/S0008-8846(00)00365-3
  3. Al-mulali, M.Z., Awang, H., Khalil, H.A. and Aljoumaily, Z.S. (2015), "The incorporation of oil palm ash in concrete as a means of recycling: A review", Cement Concrete Compos., 55, 129-138. https://doi.org/10.1016/j.cemconcomp.2014.09.007
  4. Alarcon-Ruiz, L., Platret, G., Massieu, E. and Ehrlacher, A. (2005), "The use of thermal analysis in assessing the effect of temperature on a cement paste", Cement Concrete Res., 35(3), 609-613. https://doi.org/10.1016/j.cemconres.2004.06.015
  5. Alsubari, B., Shafigh, P., Jumaat, M.Z. and Alengaram, U.J. (2014), "Palm oil fuel ash as a partial cement replacement for producing durable self-consolidating high-strength concrete", Arab. J. Sci. Eng., 39(12), 8507-8516. https://doi.org/10.1007/s13369-014-1381-3
  6. Alsubari, B., Shafigh, P. and Jumaat, M. (2015), "Development of self-consolidating high strength concrete incorporating treated palm oil fuel ash", Materials, 8(5), 2154-2173. https://doi.org/10.3390/ma8052154
  7. Alsubari, B., Shafigh, P., Ibrahim, Z., Alnahhal, M.F. and Jumaat, M.Z. (2018a), "Properties of eco- friendly self-compacting concrete containing modified treated palm oil fuel ash", Constr. Build. Mater., 158, 742-754. https://doi.org/10.1016/j.conbuildmat.2017.09.174
  8. Alsubari, B., Shafigh, P., Ibrahim, Z. and Jumaat, M.Z. (2018b), "Heat-treated palm oil fuel ash as an effective supplementary cementitious material originating from agriculture waste", Constr. Build. Mater., 167, 44-54. https://doi.org/10.1016/j.conbuildmat.2018.01.134
  9. Angst, U., Elsener, B., Larsen, C.K. and Vennesland, O. (2009), "Critical chloride content in reinforced concrete - a review", Cement Concrete Res., 39(12), 1122-1138. https://doi.org/10.1016/j.cemconres.2009.08.006
  10. Annadurai, S., Rathinam, K. and Kanagarajan, V. (2020), "Development of eco-friendly concrete produced with Rice Husk Ash (RHA) based geopolymer", Adv. Concrete Constr., Int. J., 9(2), 139-147. https://doi.org/10.12989/acc.2020.9.2.139
  11. Aprianti, E., Shafigh, P., Zawawi, R. and Hassan, Z.F.A. (2016), "Introducing an effective curing method for mortar containing high volume cementitious materials", Constr. Build. Mater., 107, 365-377. https://doi.org/10.1016/j.conbuildmat.2015.12.100
  12. Awal, A.A. and Hussin, M.W. (1997), "The effectiveness of palm oil fuel ash in preventing expansion due to alkali-silica reaction", Cement Concrete Compos., 19(4), 367-372. https://doi.org/10.1016/S0958-9465(97)00034-6
  13. Awal, A. and Hussin, M.W. (1999), "Durability of high performance concrete containing palm oil fuel ash", Proceedings of 8th International Conference on the Durability of Building Materials and Components, Vancouver, British Columbia, Canada.
  14. Berry, E.E., Hemmings, R.T. and Cornelius, B.J. (1990), "Mechanisms of hydration reactions in high volume fly ash pastes and mortars", Cement Concrete Compos., 12(4), 253-261. https://doi.org/10.1016/0958-9465(90)90004-H
  15. Bertolini, L., Elsener, B., Pedeferri, P., Redaelli, E. and Polder, R. B. (2013), Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair, John Wiley & Sons.
  16. Chindaprasirt, P., Homwuttiwong, S. and Jaturapitakkul, C. (2007), "Strength and water permeability of concrete containing palm oil fuel ash and rice husk-bark ash", Constr. Build. Mater., 21(7), 1492-1499. https://doi.org/10.1016/j.conbuildmat.2006.06.015
  17. De la Varga, I., Castro, J., Bentz, D. and Weiss, J. (2012), "Application of internal curing for mixtures containing high volumes of fly ash", Cement Concrete Compos., 34(9), 1001-1008. https://doi.org/10.1016/j.cemconcomp.2012.06.008
  18. Elahi, A., Basheer, P.A.M., Nanukuttan, S.V. and Khan, Q.U.Z. (2010), "Mechanical and durability properties of high performance concretes containing supplementary cementitious materials", Constr. Build. Mater., 24(3), 292-299. https://doi.org/10.1016/j.conbuildmat.2009.08.045
  19. Feldman, R.F., Carette, G.G. and Malhotra, V.M. (1990), "Studies on mechanics of development of physical and mechanical properties of high-volume fly ash-cement pastes", Cement Concrete Compos., 12(4), 245-251. https://doi.org/10.1016/0958- 9465(90)90003-G
  20. Gao, J.M., Qian, C.X., Liu, H.F., Wang, B. and Li, L. (2005), "ITZ microstructure of concrete containing GGBS", Cement Concrete Res., 35(7), 1299-1304. https://doi.org/10.1016/j.cemconres.2004.06.042
  21. Garbev, K. (2004), "Structure, properties and quantitative Rietveld analysis of calcium silicate hydrates (C-S-H Phases) crystallised under hydrothermal conditions", Ph.D., Institute for Technical Chemistry of the Faculty of Chemistry and Geosciences of the Ruprecht-Karls-Universitat, Hiedelberg, Germany.
  22. Gartner, E. (2004), "Industrially interesting approaches to "low-CO2" cements", Cement Concrete Res., 34(9), 1489-1498. https://doi.org/10.1016/j.cemconres.2004.01.021
  23. Goldman, A. and Bentur, A. (1992), "Effects of pozzolanic and non-reactive microfillers on the transition zone in high strength concretes", Interf. Cementit. Compos., RILEM Proceedings, 18, 53-61.
  24. Grubb, J.A., Limaye, H.S. and Kakade, A.M. (2007), "Testing pH of concrete", Concrete Int., 29(04), 78-83.
  25. He, X., Ma, M., Su, Y., Lan, M., Zheng, Z., Wang, T., Strnadel, B. and Zeng, S. (2018), "The effect of ultrahigh volume ultrafine blast furnace slag on the properties of cement pastes", Constr. Build. Mater., 189, 438-447. https://doi.org/10.1016/j.conbuildmat.2018.09.004
  26. Hobbs, D. (2001), "Concrete deterioration: causes, diagnosis, and minimising risk", Int. Mater. Rev., 46(3), 117-44. https://doi.org/10.1179/095066001101528420
  27. Isaia, G.C., Gastaldini, A.L.G. and Moraes, R. (2003), "Physical and pozzolanic action of mineral additions on the mechanical strength of high-performance concrete", Cement Concrete Compos., 25(1), 69-76. https://doi.org/10.1016/S0958-9465(01)00057-9
  28. Ismail, M.A., Budiea, A., Hussin, M. and Muthusamy, K.B. (2010), "Effect of POFA fineness on durability of high strength concrete".
  29. Jaturapitakkul, C., Tangpagasit, J., Songmue, S. and Kiattikomol, K. (2011), "Filler effect and pozzolanic reaction of ground palm oil fuel ash", Constr. Build. Mater., 25(11), 4287-4293. https://doi.org/10.1016/j.conbuildmat.2011.04.073
  30. Juenger, M.C.G. and Siddique, R. (2015), "Recent advances in understanding the role of supplementary cementitious materials in concrete", Cement Concrete Res., 78, 71-80. https://doi.org/10.1016/j.cemconres.2015.03.018
  31. Karim, M.R., Hashim, H. and Abdul Razak, H. (2016), "Assessment of pozzolanic activity of palm oil clinker powder", Constr. Build. Mater., 127, 335-343. https://doi.org/10.1016/j.conbuildmat.2016.10.002
  32. Lizarazo-Marriaga, J., Claisse, P. and Ganjian, E. (2010), "Effect of steel slag and portland cement in the rate of hydration and strength of blast furnace slag pastes", J. Mater. Civil Eng., 23(2), 153-160. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000149
  33. Lothenbach, B. and Winnefeld, F. (2006), "Thermodynamic modelling of the hydration of Portland cement", Cement Concrete Res., 36(2), 209-226. https://doi.org/10.1016/j.cemconres.2005.03.001
  34. Lothenbach, B., Scrivener, K. and Hooton, R.D. (2011), "Supplementary cementitious materials", Cement Concrete Res., 41(12), 1244-1256. https://doi.org/10.1016/j.cemconres.2010.12.001
  35. Malhotra, V. (1999), "Role of supplementary cementing materials in reducing greenhouse gas emissions", Concrete technology for a sustainable development in the 21st century.
  36. McPolin, D., Basheer, P. and Long, A. (2009), "Carbonation and pH in mortars manufactured with supplementary cementitious materials", J. Mater. Civil Eng., 21(5), 217-225. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:5(217)
  37. Mohammed, T.U., Otsuki, N. and Hamada, H. (2003), "Corrosion of steel bars in cracked concrete under marine environment", J. Mater. Civil Eng., 15(5), 460-469. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:5(460)
  38. Mojumdar, S.C. and Janotka, I.J.A.P.S. (2002), "Thermophysical properties of blends from Portland and sulfoaluminate-belite cements", Acta Physica Slovaca, 52(5), 435-446.
  39. Monteiro, P. (2006), Concrete: Microstructure, Properties, and Materials, McGraw-Hill Publishing.
  40. Monteny, J., Vincke, E., Beeldens, A., De Belie, N., Taerwe, L., Van Gemert, D. and Verstraete, W. (2000), "Chemical, microbiological, and in situ test methods for biogenic sulfuric acid corrosion of concrete", Cement Concrete Res., 30(4), 623-634. https://doi.org/10.1016/S0008-8846(00)00219-2
  41. Mounanga, P., Khelidj, A., Loukili, A. and Baroghel-Bouny, V. (2004), "Predicting Ca(OH)2 content and chemical shrinkage of hydrating cement pastes using analytical approach", Cement Concrete Res., 34(2), 255-265. https://doi.org/10.1016/j.cemconres.2003.07.006
  42. Nagaratnam, B.H., Rahman, M.E., Mirasa, A.K., Mannan, M.A. and Lame, S.O. (2016), "Workability and Heat of Hydration of Self-Compacting Concrete Incorporating Agro-Industrial Waste", J. Cleaner Prod., 112, 882-894. https://doi.org/10.1016/j.jclepro.2015.05.112
  43. Ormellese, M., Berra, M., Bolzoni, F. and Pastore, T. (2006), "Corrosion inhibitors for chlorides induced corrosion in reinforced concrete structures", Cement Concrete Res., 36(3), 536-547. https://doi.org/10.1016/j.cemconres.2005.11.007
  44. Ortolan, V., Mancio, M. and Tutikian, B. (2016), "Evaluation of the influence of the pH of concrete pore solution on the corrosion resistance of steel reinforcement", J. Build. Pathol. Rehabilit., 1(1), 10. https://doi.org/10.1007/s41024-016-0011-8
  45. Pacheco Torgal, F., Miraldo, S., Labrincha, J.A. and De Brito, J. (2012), "An overview on concrete carbonation in the context of eco-efficient construction: evaluation, use of SCMs and/or RAC", Constr. Build. Mater., 36, 141-150. https://doi.org/10.1016/j.conbuildmat.2012.04.066
  46. Papadakis, V.G. and Tsimas, S. (2002), "Supplementary cementing materials in concrete: Part I: efficiency and design", Cement Concrete Res., 32(10), 1525-1532. https://doi.org/10.1016/S0008-8846(02)00827-X
  47. Papadakis, V., Antiohos, S. and Tsimas, S. (2002), "Supplementary cementing materials in concrete: Part II: A fundamental estimation of the efficiency factor", Cement Concrete Res., 32(10), 1533-1538. https://doi.org/10.1016/S0008-8846(02)00829-3
  48. Plusquellec, G., Geiker, M., Lindgard, J., Duchesne, J., Fournier, B. and De Weerdt, K. (2017), "Determination of the pH and the free alkali metal content in the pore solution of concrete: Review and experimental comparison", Cement Concrete Res., 96, 13-26. https://doi.org/10.1016/j.cemconres.2017.03.002
  49. Rahmani, A.A., Chemrouk, M. and Ammar-Boudjelal, A. (2020), "Rheological, physico-mechanical and durability properties of multi-recycled concrete", Adv. Concrete Constr., Int. J., 9(1), 9-22. https://doi.org/10.12989/acc.2020.9.1.009
  50. Rashad, A.M. (2015), "An investigation on very high volume slag pastes subjected to elevated temperatures", Constr. Build. Mater., 74, 249-258. https://doi.org/10.1016/j.conbuildmat.2014.10.019
  51. Safiuddin, M., Abdus Salam, M. and Jumaat, M.Z. (2011), "Utilization of palm oil fuel ash in concrete: a review", J. Civil Eng. Manage., 17(2), 234-247. https://doi.org/10.3846/13923730.2011.574450
  52. Sakai, E., Miyahara, S., Ohsawa, S., Lee, S.-H. and Daimon, M. (2005), "Hydration of fly ash cement", Cement Concrete Res., 35(6), 1135-1140. https://doi.org/10.1016/j.cemconres.2004.09.008
  53. Sanawung, W., Cheewaket, T., Tangchirapat, W. and Jaturapitakkul, C. (2017), "Influence of palm oil fuel ash and W/B ratios on compressive strength, water permeability, and chloride resistance of concrete", Adv. Mater. Sci. Eng., 2017. https://doi.org/10.1155/2017/4927640
  54. Sata, V., Jaturapitakkul, C. and Kiattikomol, K. (2004), "Utilization of palm oil fuel ash in high-strength concrete", J. Mater. Civil Eng., 16(6), 623-628. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:6(623)
  55. Sata, V., Jaturapitakkul, C. and Kiattikomol, K. (2007), "Influence of pozzolan from various by- product materials on mechanical properties of high-strength concrete", Constr. Build. Mater., 21(7), 1589-1598. https://doi.org/10.1016/j.conbuildmat.2005.09.011
  56. Shehata, M.H. and Thomas, M.D.A. (2006), "Alkali release characteristics of blended cements", Cement Concrete Res., 36(6), 1166-1175. https://doi.org/10.1016/j.cemconres.2006.02.015
  57. Siler, P., Kolarova, I., Sehnal, T., Masilko, J. and Opravil, T. (2016), "The determination of the influence of pH value of curing conditions on Portland cement hydration", Procedia Eng., 151, 10-17. https://doi.org/10.1016/j.proeng.2016.07.393
  58. Song, H.-W. and Saraswathy, V. (2006), "Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag-An overview", J. Hazard. Mater., 138(2), 226-233. https://doi.org/10.1016/j.jhazmat.2006.07.022
  59. Standard, A. (2013), "C109/C109M-16a," Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (using 2-in. Or [50-mm] Cube Specimens), Committee C- 1 on Cement, ed. West Conshohocken, PA, USA: ASTM International.
  60. Tangchirapat, W., Jaturapitakkul, C. and Chindaprasirt, P. (2009), "Use of palm oil fuel ash as a supplementary cementitious material for producing high-strength concrete", Constr. Build. Mater., 23(7), 2641-2646. https://doi.org/10.1016/j.conbuildmat.2009.01.008
  61. Tangchirapat, W., Khamklai, S. and Jaturapitakkul, C. (2012), "Use of ground palm oil fuel ash to improve strength, sulfate resistance, and water permeability of concrete containing high amount of recycled concrete aggregates", Mater. Des., 41, 150-157. https://doi.org/10.1016/j.matdes.2012.04.054
  62. Toutanji, H., Delatte, N., Aggoun, S., Duval, R. and Danson, A. (2004), "Effect of supplementary cementitious materials on the compressive strength and durability of short-term cured concrete", Cement Concrete Res., 34(2), 311-319. https://doi.org/10.1016/j.cemconres.2003.08.017
  63. Vedalakshmi, R., Sundara Raj, A., Srinivasan, S. and Ganesh Babu, K. (2003), "Quantification of hydrated cement products of blended cements in low and medium strength concrete using TG and DTA technique", Thermochimica Acta, 407(1), 49-60. https://doi.org/10.1016/S0040-6031(03)00286-7
  64. Vimer, C., Yu, S. and Ghandehari, M. (2009), "Probing pH levels in civil engineering materials", J. Mater. Civil Eng., 21(2), 51-57. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:2(51)
  65. Wang, H.Y. (2008), "The effects of elevated temperature on cement paste containing GGBFS", Cement Concrete Compos., 30(10), 992-999. https://doi.org/10.1016/j.cemconcomp.2007.12.003
  66. Yahiaoui, W., Kenai, S., Menadi, B. and Kadri, E.-H. (2017), "Durability of self compacted concrete containing slag in hot climate", Adv. Concrete Constr., Int. J., 5(3), 271-288. https://doi.org/10.12989/acc.2017.5.3.271
  67. Younsi, A., Turcry, P., Ait-Mokhtar, A. and Staquet, S. (2013), "Accelerated carbonation of concrete with high content of mineral additions: Effect of interactions between hydration and drying", Cement Concrete Res., 43, 25-33. https://doi.org/10.1016/j.cemconres.2012.10.008