과제정보
The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Groups Funding program grant code (NU/RG/SERC/11/6).
참고문헌
- Abdul-Rahman, M., Al-Attar, A.A., Hamada, H.M. and Tayeh, B. (2020), "Microstructure and structural analysis of polypropylene fibre reinforced reactive powder concrete beams exposed to elevated temperature", J. Build. Eng., 29, 101167. https://doi.org/10.1016/j.jobe.2019.101167
- Abd-Elrahman, M.H., Agwa, I.S., Elsakhawy, Y. and Rizk, M.S. (2023), "Effect of utilising ferrosilicon and recycled steel fibres on ultra-high-strength concrete containing recycled granite", Case Stud. Constr. Mater., 18, e01903. https://doi.org/10.1016/j.cscm.2023.e01903
- Abdelsamie, K., Agwa, I.S., Tayeh, B.A. and Hafez, R.D.A. (2021), "Improving the brittle behaviour of high-strength concrete using keratin and glass fibres", Adv. Concrete Constr., Int. J., 12(6), 469-477. https://doi.org/10.12989/acc.2021.12.6.469
- Al-Ameri, R.A., Abid, S.R., Murali, G., Ali, S.H. and Ozakca, M. (2021), "Residual repeated impact strength of concrete exposed to elevated temperatures", Crystals, 11(8), 941. https://doi.org/10.3390/cryst11080941
- Al-Attar, A.A., Abdulrahman, M.B., Hamada, H.M. and Tayeh, B. A. (2020), "Investigating the behaviour of hybrid fibre-reinforced reactive powder concrete beams after exposure to elevated temperatures", J. Mater. Res. Technol., 9, 1966-1977. https://doi.org/10.1016/j.jmrt.2019.12.029
- Amin, M., Zeyad, A.M., Tayeh, B.A. and Agwa, I.S. (2021a), "Effect of high temperatures on mechanical, radiation attenuation and microstructure properties of heavyweight geopolymer concrete", Struct. Eng. Mech., Int. J., 80(2), 181-199. https://doi.org/10.12989/sem.2021.80.2.181
- Amin, M., Zeyad, A.M., Tayeh, B.A. and Agwa, I.S. (2021b), "Engineering properties of self-cured normal and high strength concrete produced using polyethylene glycol and porous ceramic waste as coarse aggregate", Constr. Build. Mater., 299, 124243. https://doi.org/10.1016/j.conbuildmat.2021.124243
- Amin, M., Hakeem, I.Y., Zeyad, A.M., Tayeh, B.A., Maglad, A.M. and Agwa, I.S. (2022a), "Influence of recycled aggregates and carbon nanofibres on properties of ultra-high-performance concrete under elevated temperatures", Case Stud. Constr. Mater., 16, e01063. https://doi.org/10.1016/j.cscm.2022.e01063
- Amin, M., Zeyad, A.M., Tayeh, B.A. and Agwa, I.S. (2022b), "Effect of ferrosilicon and silica fume on mechanical, durability, and microstructure characteristics of ultra high-performance concrete", Constr. Build. Mater., 320, 126233. https://doi.org/10.1016/j.conbuildmat.2021.126233
- ASTM (2005), ASTM C494: Standard specification for chemical admixtures for concrete.
- ASTM (2014), ASTM C 192/C 192M-14: Standard practice for making and curing concrete test specimens in the laboratory.
- ASTM, A. (2008), ASTM C496/C496M-04e1 standard test method for splitting tensile strength of cylindrical concrete specimens. Annu B ASTM Stand.
- ASTM, A. (2017), C150/C150M-17, Standard specification for Portland cement. American Society for Testing and Materials: West Conshohocken, PA, USA.
- ASTM, A. (2018), C 78/C78M-18. Standard Test Method for Flexural Strength of Concrete; ASTM: West Conshohocken, PA, USA.
- ASTM, C. (2003), Standard specification for concrete aggregates. Philadelphia, PA: American Society for Testing and Materials.
- ASTM, C. (2010), 143/C143M: Standard Test Method for Slump of Hydraulic-Cement Concrete. Annual Book of ASTM Standards, 4, 89-91.
- ASTM, C. (2013), Standard test method for density, absorption, and voids in hardened concrete. C642-13.
- Badogiannis, E., Christidis, Κ. and Tzanetatos, G. (2019), "Evaluation of the mechanical behavior of pumice lightweight concrete reinforced with steel and polypropylene fibers", Constr. Build. Mater., 196, 443-456. https://doi.org/10.1016/j.conbuildmat.2018.11.109
- Balgourinejad, N., Haghighifar, M., Madandoust, R. and Charkhtab, S. (2022), "Experimental study on mechanical properties, microstructural of lightweight concrete incorporating polypropylene fibers and metakaolin at high temperatures", J. Mater. Res. Technol., 18, 5238-5256. https://doi.org/10.1016/j.jmrt.2022.04.005
- Behnood, A. and Ghandehari, M. (2009), "Comparison of compressive and splitting tensile strength of high-strength concrete with and without polypropylene fibers heated to high temperatures", Fire Safety J., 44(8), 1015-1022. https://doi.org/10.1016/j.firesaf.2009.07.001
- Capasso, I. and Iucolano, F. (2020), "Production of lightweight gypsum using a vegetal protein as foaming agent", Mater. Struct., 53(2), 1-13. https://doi.org/10.1617/s11527-020-01469-w
- Chen, J., Tong, H., Yuan, J., Fang, Y. and Gu, R. (2022), "Permeability prediction model modified on Kozeny-Carman for building foundation of clay soil", Buildings, 12(11), 1798. https://doi.org/10.3390/buildings12111798
- Dawood, E.T. and Hamad, A.J. (2013), "High performance lightweight concrete reinforced with glass fibers", AL-Mansour J., 20, 73-87.
- Dawood, E.T. and Ramli, M. (2011), "High strength characteristics of cement mortar reinforced with hybrid fibres", Constr. Build. Mater., 25(5), 2240-2247. https://doi.org/10.1016/j.conbuildmat.2010.11.008
- Dong, Z., Quan, W., Ma, X., Li, X. and Zhou, J. (2023), "Asymptotic homogenization of effective thermal-elastic properties of concrete considering its three-dimensional mesostructured", Comput. Struct., 279, 106970. https://doi.org/10.1016/j.compstruc.2022.106970
- Erdem, S., Dawson, A.R. and Thom, N.H. (2012), "Impact load-induced micro-structural damage and micro-structure associated mechanical response of concrete made with different surface roughness and porosity aggregates", Cement Concrete Res., 42(2), 291-305. https://doi.org/10.1016/j.cemconres.2011.09.015
- Fattouh, M.S., Tayeh, B.A., Agwa, I.S. and Elsayed, E.K. (2023), "Improvement in the flexural behaviour of road pavement slab concrete containing steel fibre and silica fume", Case Stud. Constr. Mater., 18, e01720.
- Grabois, T.M., Cordeiro, G.C. and Toledo Filho, R.D. (2016), "Fresh and hardened-state properties of self-compacting lightweight concrete reinforced with steel fibers", Constr. Build. Mater., 104, 284-292. https://doi.org/10.1016/j.conbuildmat.2015.12.060
- Gu, M., Cai, X., Fu, Q., Li, H., Wang, X. and Mao, B. (2022), "Numerical analysis of passive piles under surcharge load in extensively deep soft soil", Buildings, 12(11), 1988. https://doi.org/10.3390/buildings12111988
- Habel, K., Viviani, M., Denarie, E. and Bruhwiler, E. (2006), "Development of the mechanical properties of an ultra-high performance fiber reinforced concrete (UHPFRC)", Cement Concrete Res., 36(7), 1362-1370. https://doi.org/10.1016/j.cemconres.2006.03.009
- Hager, I. (2013), "Behaviour of cement concrete at high temperature", Bulletin of the Polish Academy of Sciences. Technical Sciences, 61(1), 145-154. https://doi.org/10.2478/bpasts-2013-0013
- Hong, L., Gu, X. and Lin, F. (2014), "Influence of aggregate surface roughness on mechanical properties of interface and concrete", Constr. Build. Mater., 65, 338-349. https://doi.org/10.1016/j.conbuildmat.2014.04.131
- Huang, H., Li, M., Yuan, Y. and Bai, H. (2022a), "Theoretical analysis on the lateral drift of precast concrete frame with replaceable artificial controllable plastic hinges", J. Build. Eng., 62, 105386. https://doi.org/10.1016/j.jobe.2022.105386
- Huang, Y., Zhang, W. and Liu, X. (2022b), "Assessment of diagonal macrocrack-induced debonding mechanisms in FRP-strengthened RC beams", J. Compos. Constr., 26(5), 04022056. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001255
- Huang, H., Li, M., Yuan, Y. and Bai, H. (2023a), "Experimental Research on the Seismic Performance of Precast Concrete Frame with Replaceable Artificial Controllable Plastic Hinges", J. Struct. Eng., 149(1), 04022222. https://doi.org/10.1061/JSENDH.STENG-11648
- Huang, Y., Huang, J., Zhang, W. and Liu, X. (2023b), "Experimental and numerical study of hooked-end steel fiber-reinforced concrete based on the meso-and macro-models", Compos. Struct., 309, 116750. https://doi.org/10.1016/j.compstruct.2023.116750
- Jothi Jayakumar, V. and Anandan, S. (2014), "Composite strain hardening properties of high performance hybrid fibre reinforced concrete", Adv. Civil Eng., 2014. https://doi.org/10.1155/2014/363649
- Kalifa, P., Chene, G. and Galle, C. (2001), "High-temperature behaviour of HPC with polypropylene fibres: From spalling to microstructure", Cement Concrete Res., 31(10), 1487-1499. https://doi.org/10.1016/S0008-8846(01)00596-8
- Libre, N.A., Shekarchi, M., Mahoutian, M. and Soroushian, P. (2011), "Mechanical properties of hybrid fiber reinforced lightweight aggregate concrete made with natural pumice", Constr. Build. Mater., 25(5), 2458-2464. https://doi.org/10.1016/j.conbuildmat.2010.11.058
- Ma, Q., Guo, R., Zhao, Z., Lin, Z. and He, K. (2015), "Mechanical properties of concrete at high temperature-A review", Constr. Build. Mater., 93, 371-383. https://doi.org/10.1016/j.conbuildmat.2015.05.131
- Mansouri, I., Shahheidari, F.S., Hashemi, S.M.A. and Farzampour, A. (2020), "Investigation of steel fiber effects on concrete abrasion resistance", Adv. Concrete Constr., Int. J., 9(4), 367-374. https://doi.org/10.12989/acc.2020.9.4.367
- Rabbitt, M.C. (1989), The United States Geological Survey, 1879-1989 (Vol. 1050): US Government Printing Office.
- Rao, G.A. and Prasad, B.K.R. (2002), "Influence of the roughness of aggregate surface on the interface bond strength", Cement Concrete Res., 32(2), 253-257. https://doi.org/10.1016/S0008-8846(01)00668-8
- Rashad, A.M. (2019), "A short manual on natural pumice as a lightweight aggregate", J. Build. Eng., 25, 100802. https://doi.org/10.1016/j.jobe.2019.100802
- Ren, C., Yu, J., Liu, S., Yao, W., Zhu, Y. and Liu, X. (2022), "A plastic strain-induced damage model of porous rock suitable for different stress paths", Rock Mech. Rock Eng., 55(4), 1887-1906. https://doi.org/10.1007/s00603-022-02775-1
- Rudnik, E. and Drzymala, T. (2018), "Thermal behavior of polypropylene fiber-reinforced concrete at elevated temperatures", J. Thermal Anal. Calorim., 131(2), 1005-1015. https://doi.org/10.1007/s10973-017-6600-1
- Saad, M., Agwa, I.S., Abdelsalam Abdelsalam, B. and Amin, M. (2022), "Improving the brittle behavior of high strength concrete using banana and palm leaf sheath fibers", Mech. Adv. Mater. Struct., 29(4), 564-573. https://doi.org/10.1080/15376494.2020.1780352
- Sahoo, S. and Selvaraju, A.K. (2020), "Mechanical characterization of structural lightweight aggregate concrete made with sintered fly ash aggregates and synthetic fibres", Cement Concrete Compos., 113, 103712. https://doi.org/10.1016/j.cemconcomp.2020.103712
- Sheng, C., He, G., Hu, Z., Chou, C., Shi, J., Li, J., Meng, Q., Ning, X., Wang, L. and Ning, F. (2021), "Yarn on yarn abrasion failure mechanism of ultrahigh molecular weight polyethylene fiber", J. Eng. Fibers Fabrics, 16, 15589250211052766. https://doi.org/10.1177/15589250211052766
- Smeets, B., Pesek, J., Deckers, T., Hall, G.N., Cuvelier, M., Ongenae, S., Bloemen, V., Luyten, F.P., Papantoniou, I. and Ramon, H. (2020), "Compaction dynamics during progenitor cell self-assembly reveal granular mechanics", Matter, 2(5), 1283-1295. https://doi.org/10.1016/j.matt.2020.02.016
- Song, P., Hwang, S. and Sheu, B. (2005), "Strength properties of nylon-and polypropylene-fiber-reinforced concretes", Cement Concrete Res., 35(8), 1546-1550. https://doi.org/10.1016/j.cemconres.2004.06.033
- Sasanipour, H., Aslani, F. and Taherinezhad, J. (2019), "Effect of silica fume on durability of self-compacting concrete made with waste recycled concrete aggregates", Constr. Build. Mater., 227, 116598. https://doi.org/10.1016/j.conbuildmat.2019.07.324
- Standard, B. (1986), BS 1881: Part 202. Testing concrete: Recommendations for surface hardness testing by rebound hammer. British Standards Institution, London.
- Sun, L., Wang, C., Zhang, C., Yang, Z., Li, C. and Qiao, P. (2023), "Experimental investigation on the bond performance of sea sand coral concrete with FRP bar reinforcement for marine environments", Adv. Struct. Eng., 26(3), 533-546. https://doi.org/10.1177/13694332221131153
- Tayeh, B.A., Zeyad, A.M., Agwa, I.S. and Amin, M. (2021), "Effect of elevated temperatures on mechanical properties of lightweight geopolymer concrete", Case Stud. Constr. Mater., 15, e00673. https://doi.org/10.1016/j.cscm.2021.e00673
- Tayeh, B.A., Hakamy, A., Amin, M., Zeyad, A.M. and Agwa, I.S. (2022), "Effect of air agent on mechanical properties and microstructure of lightweight geopolymer concrete under high temperature", Case Stud. Constr. Mater., 16, e00951. https://doi.org/10.1016/j.cscm.2022.e00951
- Vargas, P., Restrepo-Baena, O. and Tobon, J.I. (2017), "Microstructural analysis of interfacial transition zone (ITZ) and its impact on the compressive strength of lightweight concretes", Constr. Build. Mater., 137, 381-389. https://doi.org/10.1016/j.conbuildmat.2017.01.101
- Wang, J., Dai, Q., Si, R. and Guo, S. (2019), "Mechanical, durability, and microstructural properties of macro synthetic polypropylene (PP) fiber-reinforced rubber concrete", J. Cleaner Prod., 234, 1351-1364. https://doi.org/10.1016/j.jclepro.2019.06.272
- Wang, M., Yang, X. and Wang, W. (2022), "Establishing a 3D aggregates database from X-ray CT scans of bulk concrete", Constr. Build. Mater., 315, 125740. https://doi.org/10.1016/j.conbuildmat.2021.125740
- Wong, H., Zobel, M., Buenfeld, N. and Zimmerman, R. (2009), "Influence of the interfacial transition zone and microcracking on the diffusivity, permeability and sorptivity of cement-based materials after drying", Magaz. Concrete Res., 61(8), 571-589. https://doi.org/10.1680/macr.2008.61.8.571
- Wu, T., Yang, X., Wei, H. and Liu, X. (2019), "Mechanical properties and microstructure of lightweight aggregate concrete with and without fibers", Constr. Build. Mater., 199, 526-539. https://doi.org/10.1016/j.conbuildmat.2018.12.037
- Xiang, Z., Zhou, J. and Niu, J. (2022), "Compressive behavior of CFRP-confined steel fiber-reinforced self-compacting lightweight aggregate concrete in square columns", J. Build. Eng., 59, 105118. https://doi.org/10.1016/j.jobe.2022.105118
- Xiao, X., Zhang, H., Li, Z. and Chen, F. (2022), "Effect of Temperature on the Fatigue Life Assessment of Suspension Bridge Steel Deck Welds under Dynamic Vehicle Loading", Mathe. Probl. Eng. https://doi.org/10.1155/2022/7034588
- Xu, J., Wu, Z., Chen, H., Shao, L., Zhou, X. and Wang, S. (2022), "Influence of dry-wet cycles on the strength behavior of basalt-fiber reinforced loess", Eng. Geol., 302, 106645. https://doi.org/10.1016/j.enggeo.2022.106645
- Ye, M., Jiang, J., Chen, H., Zhou, H. and Song, D. (2021), "Seismic behavior of an innovative hybrid beam-column connection for precast concrete structures", Eng. Struct., 227, 111436. https://doi.org/10.1016/j.engstruct.2020.111436
- Youssf, O., Hassanli, R., Elchalakani, M., Mills, J.E., Tayeh, B.A. and Agwaa, I.S. (2023), "Punching Shear Behaviour and Repair Efficiency of Reinforced Eco-friendly Lightweight Concrete Slabs", Eng. Struct., 281, 115805. https://doi.org/10.1016/j.engstruct.2023.115805
- Zeyad, A.M. (2020), "Effect of fibers types on fresh properties and flexural toughness of self-compacting concrete", J. Mater. Res. Technol., 9(3), 4147-4158. https://doi.org/10.1016/j.jmrt.2020.02.042
- Zeyad, A.M., Hakeem, I.Y., Amin, M., Tayeh, B.A. and Agwa, I.S. (2022), "Effect of aggregate and fibre types on ultra-high-performance concrete designed for radiation shielding", J. Build. Eng., 58, 104960. https://doi.org/10.1016/j.jobe.2022.104960
- Zhang, Z., Li, W. and Yang, J. (2021), "Analysis of stochastic process to model safety risk in construction industry", J. Civil Eng. Manage., 27(2), 87-99. https://doi.org/10.3846/jcem.2021.14108
- Zhang, B., Feng, Y., Xie, J., He, J., Yu, T., Cai, C. and Huang, D. (2022a), "Compressive behaviours, splitting properties, and workability of lightweight cement concrete: The role of fibres", Constr. Build. Mater., 320, 126237. https://doi.org/10.1016/j.conbuildmat.2021.126237
- Zhang, H., Li, L., Ma, W., Luo, Y., Li, Z. and Kuai, H. (2022b), "Effects of welding residual stresses on fatigue reliability assessment of a PC beam bridge with corrugated steel webs under dynamic vehicle loading", In: Structures, Vol. 45, pp. 1561-1572. https://doi.org/10.1016/j.istruc.2022.09.094
- Zhang, H., Ouyang, Z., Li, L., Ma, W., Liu, Y., Chen, F. and Xiao, X. (2022c), "Numerical study on welding residual stress distribution of corrugated steel webs", Metals, 12(11), 1831. https://doi.org/10.3390/met12111831
- Zhang, Z., Liang, G., Niu, Q., Wang, F., Chen, J., Zhao, B. and Ke, L. (2022d), "A Wiener degradation process with drift-based approach of determining target reliability index of concrete structures", Quality Reliabil. Eng. Int., 38(7), 3710-3725. https://doi.org/10.1002/qre.3168
- Zhu, Q., Chen, J., Gou, G., Chen, H. and Li, P. (2017), "Ameliorated longitudinal critically refracted-Attenuation velocity method for welding residual stress measurement", J. Mater. Process. Technol., 246, 267-275. https://doi.org/10.1016/j.jmatprotec.2017.03.022