DOI QR코드

DOI QR Code

Effect of polypropylene and glass fiber on properties of lightweight concrete exposed to high temperature

  • Abdulnour Ali Jazem Ghanim (Department of Civil Engineering, College of Engineering, Najran University) ;
  • Mohamed Amin (Civil and Architectural Constructions Department, Faculty of Technology and Education, Suez University) ;
  • Abdullah M. Zeyad (Civil Engineering Department, College of Engineering, Jazan University) ;
  • Bassam A. Tayeh (Civil Engineering Department, Faculty of Engineering, Islamic University of Gaza) ;
  • Ibrahim Saad Agwa (Civil and Architectural Constructions Department, Faculty of Technology and Education, Suez University) ;
  • Yara Elsakhawy (Civil Engineering Dept., Faculty of Engineering, Delta University for science and Technology)
  • Received : 2020.05.01
  • Accepted : 2023.03.04
  • Published : 2023.03.25

Abstract

The effect of glass fibres (GF) and polypropylene fibres (PPF) on the fresh properties and mechanical properties of lightweight concrete (LWC) exposed to high temperatures is investigated in this study. In this study, fifteen LWC mixtures were carried out in three different groups reinforced with PPF or GF fibers by 0%, 0.2%, and 0.4% by volume of concrete. The first group included aluminum powder (AP) as an air agent at 0.03% with the normal weight coarse aggregate (NWCA) by 100% of the weight of coarse aggregate. In the second group, 33% of the NWCA weight was replaced by lightweight coarse aggregate (LWCA). In the third group, 67% of the NWCA weight was replaced by LWCA. The slump, unit weight, Compressive strength (CS), tensile strength (TS), and flexural strength (FS) were examined. For two hours, the CS and FS were subjected to elevated temperatures of 200℃, 400℃, and 600℃, in addition to microstructure analysis of concrete. In comparison to the reference mixture, the fresh properties and bulk density of LWC decreased with the use of the air agent or the replacement of 67% of the NWCA with LWCA. As a result of the fiber addition, both the slump test and the bulk density decreased. The addition of fibers increased the CS; the highest CS was 38.5 MPa when 0.4% GF was added, compared to 28.9 MPa for the reference mixture at the test age of 28 days. In addition, flexural and TS increased by 53% and 38%, respectively, for 0.4% GF mixes. As well as, adding 0.4% GF to LWC maintained a higher CS than other mixtures.

Keywords

Acknowledgement

The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Groups Funding program grant code (NU/RG/SERC/11/6).

References

  1. Abdul-Rahman, M., Al-Attar, A.A., Hamada, H.M. and Tayeh, B. (2020), "Microstructure and structural analysis of polypropylene fibre reinforced reactive powder concrete beams exposed to elevated temperature", J. Build. Eng., 29, 101167. https://doi.org/10.1016/j.jobe.2019.101167
  2. Abd-Elrahman, M.H., Agwa, I.S., Elsakhawy, Y. and Rizk, M.S. (2023), "Effect of utilising ferrosilicon and recycled steel fibres on ultra-high-strength concrete containing recycled granite", Case Stud. Constr. Mater., 18, e01903. https://doi.org/10.1016/j.cscm.2023.e01903
  3. Abdelsamie, K., Agwa, I.S., Tayeh, B.A. and Hafez, R.D.A. (2021), "Improving the brittle behaviour of high-strength concrete using keratin and glass fibres", Adv. Concrete Constr., Int. J., 12(6), 469-477. https://doi.org/10.12989/acc.2021.12.6.469
  4. Al-Ameri, R.A., Abid, S.R., Murali, G., Ali, S.H. and Ozakca, M. (2021), "Residual repeated impact strength of concrete exposed to elevated temperatures", Crystals, 11(8), 941. https://doi.org/10.3390/cryst11080941
  5. Al-Attar, A.A., Abdulrahman, M.B., Hamada, H.M. and Tayeh, B. A. (2020), "Investigating the behaviour of hybrid fibre-reinforced reactive powder concrete beams after exposure to elevated temperatures", J. Mater. Res. Technol., 9, 1966-1977. https://doi.org/10.1016/j.jmrt.2019.12.029
  6. Amin, M., Zeyad, A.M., Tayeh, B.A. and Agwa, I.S. (2021a), "Effect of high temperatures on mechanical, radiation attenuation and microstructure properties of heavyweight geopolymer concrete", Struct. Eng. Mech., Int. J., 80(2), 181-199. https://doi.org/10.12989/sem.2021.80.2.181
  7. Amin, M., Zeyad, A.M., Tayeh, B.A. and Agwa, I.S. (2021b), "Engineering properties of self-cured normal and high strength concrete produced using polyethylene glycol and porous ceramic waste as coarse aggregate", Constr. Build. Mater., 299, 124243. https://doi.org/10.1016/j.conbuildmat.2021.124243
  8. Amin, M., Hakeem, I.Y., Zeyad, A.M., Tayeh, B.A., Maglad, A.M. and Agwa, I.S. (2022a), "Influence of recycled aggregates and carbon nanofibres on properties of ultra-high-performance concrete under elevated temperatures", Case Stud. Constr. Mater., 16, e01063. https://doi.org/10.1016/j.cscm.2022.e01063
  9. Amin, M., Zeyad, A.M., Tayeh, B.A. and Agwa, I.S. (2022b), "Effect of ferrosilicon and silica fume on mechanical, durability, and microstructure characteristics of ultra high-performance concrete", Constr. Build. Mater., 320, 126233. https://doi.org/10.1016/j.conbuildmat.2021.126233
  10. ASTM (2005), ASTM C494: Standard specification for chemical admixtures for concrete.
  11. ASTM (2014), ASTM C 192/C 192M-14: Standard practice for making and curing concrete test specimens in the laboratory.
  12. ASTM, A. (2008), ASTM C496/C496M-04e1 standard test method for splitting tensile strength of cylindrical concrete specimens. Annu B ASTM Stand.
  13. ASTM, A. (2017), C150/C150M-17, Standard specification for Portland cement. American Society for Testing and Materials: West Conshohocken, PA, USA.
  14. ASTM, A. (2018), C 78/C78M-18. Standard Test Method for Flexural Strength of Concrete; ASTM: West Conshohocken, PA, USA.
  15. ASTM, C. (2003), Standard specification for concrete aggregates. Philadelphia, PA: American Society for Testing and Materials.
  16. ASTM, C. (2010), 143/C143M: Standard Test Method for Slump of Hydraulic-Cement Concrete. Annual Book of ASTM Standards, 4, 89-91.
  17. ASTM, C. (2013), Standard test method for density, absorption, and voids in hardened concrete. C642-13.
  18. Badogiannis, E., Christidis, Κ. and Tzanetatos, G. (2019), "Evaluation of the mechanical behavior of pumice lightweight concrete reinforced with steel and polypropylene fibers", Constr. Build. Mater., 196, 443-456. https://doi.org/10.1016/j.conbuildmat.2018.11.109
  19. Balgourinejad, N., Haghighifar, M., Madandoust, R. and Charkhtab, S. (2022), "Experimental study on mechanical properties, microstructural of lightweight concrete incorporating polypropylene fibers and metakaolin at high temperatures", J. Mater. Res. Technol., 18, 5238-5256. https://doi.org/10.1016/j.jmrt.2022.04.005
  20. Behnood, A. and Ghandehari, M. (2009), "Comparison of compressive and splitting tensile strength of high-strength concrete with and without polypropylene fibers heated to high temperatures", Fire Safety J., 44(8), 1015-1022. https://doi.org/10.1016/j.firesaf.2009.07.001
  21. Capasso, I. and Iucolano, F. (2020), "Production of lightweight gypsum using a vegetal protein as foaming agent", Mater. Struct., 53(2), 1-13. https://doi.org/10.1617/s11527-020-01469-w
  22. Chen, J., Tong, H., Yuan, J., Fang, Y. and Gu, R. (2022), "Permeability prediction model modified on Kozeny-Carman for building foundation of clay soil", Buildings, 12(11), 1798. https://doi.org/10.3390/buildings12111798
  23. Dawood, E.T. and Hamad, A.J. (2013), "High performance lightweight concrete reinforced with glass fibers", AL-Mansour J., 20, 73-87.
  24. Dawood, E.T. and Ramli, M. (2011), "High strength characteristics of cement mortar reinforced with hybrid fibres", Constr. Build. Mater., 25(5), 2240-2247. https://doi.org/10.1016/j.conbuildmat.2010.11.008
  25. Dong, Z., Quan, W., Ma, X., Li, X. and Zhou, J. (2023), "Asymptotic homogenization of effective thermal-elastic properties of concrete considering its three-dimensional mesostructured", Comput. Struct., 279, 106970. https://doi.org/10.1016/j.compstruc.2022.106970
  26. Erdem, S., Dawson, A.R. and Thom, N.H. (2012), "Impact load-induced micro-structural damage and micro-structure associated mechanical response of concrete made with different surface roughness and porosity aggregates", Cement Concrete Res., 42(2), 291-305. https://doi.org/10.1016/j.cemconres.2011.09.015
  27. Fattouh, M.S., Tayeh, B.A., Agwa, I.S. and Elsayed, E.K. (2023), "Improvement in the flexural behaviour of road pavement slab concrete containing steel fibre and silica fume", Case Stud. Constr. Mater., 18, e01720.
  28. Grabois, T.M., Cordeiro, G.C. and Toledo Filho, R.D. (2016), "Fresh and hardened-state properties of self-compacting lightweight concrete reinforced with steel fibers", Constr. Build. Mater., 104, 284-292. https://doi.org/10.1016/j.conbuildmat.2015.12.060
  29. Gu, M., Cai, X., Fu, Q., Li, H., Wang, X. and Mao, B. (2022), "Numerical analysis of passive piles under surcharge load in extensively deep soft soil", Buildings, 12(11), 1988. https://doi.org/10.3390/buildings12111988
  30. Habel, K., Viviani, M., Denarie, E. and Bruhwiler, E. (2006), "Development of the mechanical properties of an ultra-high performance fiber reinforced concrete (UHPFRC)", Cement Concrete Res., 36(7), 1362-1370. https://doi.org/10.1016/j.cemconres.2006.03.009
  31. Hager, I. (2013), "Behaviour of cement concrete at high temperature", Bulletin of the Polish Academy of Sciences. Technical Sciences, 61(1), 145-154. https://doi.org/10.2478/bpasts-2013-0013
  32. Hong, L., Gu, X. and Lin, F. (2014), "Influence of aggregate surface roughness on mechanical properties of interface and concrete", Constr. Build. Mater., 65, 338-349. https://doi.org/10.1016/j.conbuildmat.2014.04.131
  33. Huang, H., Li, M., Yuan, Y. and Bai, H. (2022a), "Theoretical analysis on the lateral drift of precast concrete frame with replaceable artificial controllable plastic hinges", J. Build. Eng., 62, 105386. https://doi.org/10.1016/j.jobe.2022.105386
  34. Huang, Y., Zhang, W. and Liu, X. (2022b), "Assessment of diagonal macrocrack-induced debonding mechanisms in FRP-strengthened RC beams", J. Compos. Constr., 26(5), 04022056. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001255
  35. Huang, H., Li, M., Yuan, Y. and Bai, H. (2023a), "Experimental Research on the Seismic Performance of Precast Concrete Frame with Replaceable Artificial Controllable Plastic Hinges", J. Struct. Eng., 149(1), 04022222. https://doi.org/10.1061/JSENDH.STENG-11648
  36. Huang, Y., Huang, J., Zhang, W. and Liu, X. (2023b), "Experimental and numerical study of hooked-end steel fiber-reinforced concrete based on the meso-and macro-models", Compos. Struct., 309, 116750. https://doi.org/10.1016/j.compstruct.2023.116750
  37. Jothi Jayakumar, V. and Anandan, S. (2014), "Composite strain hardening properties of high performance hybrid fibre reinforced concrete", Adv. Civil Eng., 2014. https://doi.org/10.1155/2014/363649
  38. Kalifa, P., Chene, G. and Galle, C. (2001), "High-temperature behaviour of HPC with polypropylene fibres: From spalling to microstructure", Cement Concrete Res., 31(10), 1487-1499. https://doi.org/10.1016/S0008-8846(01)00596-8
  39. Libre, N.A., Shekarchi, M., Mahoutian, M. and Soroushian, P. (2011), "Mechanical properties of hybrid fiber reinforced lightweight aggregate concrete made with natural pumice", Constr. Build. Mater., 25(5), 2458-2464. https://doi.org/10.1016/j.conbuildmat.2010.11.058
  40. Ma, Q., Guo, R., Zhao, Z., Lin, Z. and He, K. (2015), "Mechanical properties of concrete at high temperature-A review", Constr. Build. Mater., 93, 371-383. https://doi.org/10.1016/j.conbuildmat.2015.05.131
  41. Mansouri, I., Shahheidari, F.S., Hashemi, S.M.A. and Farzampour, A. (2020), "Investigation of steel fiber effects on concrete abrasion resistance", Adv. Concrete Constr., Int. J., 9(4), 367-374. https://doi.org/10.12989/acc.2020.9.4.367
  42. Rabbitt, M.C. (1989), The United States Geological Survey, 1879-1989 (Vol. 1050): US Government Printing Office.
  43. Rao, G.A. and Prasad, B.K.R. (2002), "Influence of the roughness of aggregate surface on the interface bond strength", Cement Concrete Res., 32(2), 253-257. https://doi.org/10.1016/S0008-8846(01)00668-8
  44. Rashad, A.M. (2019), "A short manual on natural pumice as a lightweight aggregate", J. Build. Eng., 25, 100802. https://doi.org/10.1016/j.jobe.2019.100802
  45. Ren, C., Yu, J., Liu, S., Yao, W., Zhu, Y. and Liu, X. (2022), "A plastic strain-induced damage model of porous rock suitable for different stress paths", Rock Mech. Rock Eng., 55(4), 1887-1906. https://doi.org/10.1007/s00603-022-02775-1
  46. Rudnik, E. and Drzymala, T. (2018), "Thermal behavior of polypropylene fiber-reinforced concrete at elevated temperatures", J. Thermal Anal. Calorim., 131(2), 1005-1015. https://doi.org/10.1007/s10973-017-6600-1
  47. Saad, M., Agwa, I.S., Abdelsalam Abdelsalam, B. and Amin, M. (2022), "Improving the brittle behavior of high strength concrete using banana and palm leaf sheath fibers", Mech. Adv. Mater. Struct., 29(4), 564-573. https://doi.org/10.1080/15376494.2020.1780352
  48. Sahoo, S. and Selvaraju, A.K. (2020), "Mechanical characterization of structural lightweight aggregate concrete made with sintered fly ash aggregates and synthetic fibres", Cement Concrete Compos., 113, 103712. https://doi.org/10.1016/j.cemconcomp.2020.103712
  49. Sheng, C., He, G., Hu, Z., Chou, C., Shi, J., Li, J., Meng, Q., Ning, X., Wang, L. and Ning, F. (2021), "Yarn on yarn abrasion failure mechanism of ultrahigh molecular weight polyethylene fiber", J. Eng. Fibers Fabrics, 16, 15589250211052766. https://doi.org/10.1177/15589250211052766
  50. Smeets, B., Pesek, J., Deckers, T., Hall, G.N., Cuvelier, M., Ongenae, S., Bloemen, V., Luyten, F.P., Papantoniou, I. and Ramon, H. (2020), "Compaction dynamics during progenitor cell self-assembly reveal granular mechanics", Matter, 2(5), 1283-1295. https://doi.org/10.1016/j.matt.2020.02.016
  51. Song, P., Hwang, S. and Sheu, B. (2005), "Strength properties of nylon-and polypropylene-fiber-reinforced concretes", Cement Concrete Res., 35(8), 1546-1550. https://doi.org/10.1016/j.cemconres.2004.06.033
  52. Sasanipour, H., Aslani, F. and Taherinezhad, J. (2019), "Effect of silica fume on durability of self-compacting concrete made with waste recycled concrete aggregates", Constr. Build. Mater., 227, 116598. https://doi.org/10.1016/j.conbuildmat.2019.07.324
  53. Standard, B. (1986), BS 1881: Part 202. Testing concrete: Recommendations for surface hardness testing by rebound hammer. British Standards Institution, London.
  54. Sun, L., Wang, C., Zhang, C., Yang, Z., Li, C. and Qiao, P. (2023), "Experimental investigation on the bond performance of sea sand coral concrete with FRP bar reinforcement for marine environments", Adv. Struct. Eng., 26(3), 533-546. https://doi.org/10.1177/13694332221131153
  55. Tayeh, B.A., Zeyad, A.M., Agwa, I.S. and Amin, M. (2021), "Effect of elevated temperatures on mechanical properties of lightweight geopolymer concrete", Case Stud. Constr. Mater., 15, e00673. https://doi.org/10.1016/j.cscm.2021.e00673
  56. Tayeh, B.A., Hakamy, A., Amin, M., Zeyad, A.M. and Agwa, I.S. (2022), "Effect of air agent on mechanical properties and microstructure of lightweight geopolymer concrete under high temperature", Case Stud. Constr. Mater., 16, e00951. https://doi.org/10.1016/j.cscm.2022.e00951
  57. Vargas, P., Restrepo-Baena, O. and Tobon, J.I. (2017), "Microstructural analysis of interfacial transition zone (ITZ) and its impact on the compressive strength of lightweight concretes", Constr. Build. Mater., 137, 381-389. https://doi.org/10.1016/j.conbuildmat.2017.01.101
  58. Wang, J., Dai, Q., Si, R. and Guo, S. (2019), "Mechanical, durability, and microstructural properties of macro synthetic polypropylene (PP) fiber-reinforced rubber concrete", J. Cleaner Prod., 234, 1351-1364. https://doi.org/10.1016/j.jclepro.2019.06.272
  59. Wang, M., Yang, X. and Wang, W. (2022), "Establishing a 3D aggregates database from X-ray CT scans of bulk concrete", Constr. Build. Mater., 315, 125740. https://doi.org/10.1016/j.conbuildmat.2021.125740
  60. Wong, H., Zobel, M., Buenfeld, N. and Zimmerman, R. (2009), "Influence of the interfacial transition zone and microcracking on the diffusivity, permeability and sorptivity of cement-based materials after drying", Magaz. Concrete Res., 61(8), 571-589. https://doi.org/10.1680/macr.2008.61.8.571
  61. Wu, T., Yang, X., Wei, H. and Liu, X. (2019), "Mechanical properties and microstructure of lightweight aggregate concrete with and without fibers", Constr. Build. Mater., 199, 526-539. https://doi.org/10.1016/j.conbuildmat.2018.12.037
  62. Xiang, Z., Zhou, J. and Niu, J. (2022), "Compressive behavior of CFRP-confined steel fiber-reinforced self-compacting lightweight aggregate concrete in square columns", J. Build. Eng., 59, 105118. https://doi.org/10.1016/j.jobe.2022.105118
  63. Xiao, X., Zhang, H., Li, Z. and Chen, F. (2022), "Effect of Temperature on the Fatigue Life Assessment of Suspension Bridge Steel Deck Welds under Dynamic Vehicle Loading", Mathe. Probl. Eng. https://doi.org/10.1155/2022/7034588
  64. Xu, J., Wu, Z., Chen, H., Shao, L., Zhou, X. and Wang, S. (2022), "Influence of dry-wet cycles on the strength behavior of basalt-fiber reinforced loess", Eng. Geol., 302, 106645. https://doi.org/10.1016/j.enggeo.2022.106645
  65. Ye, M., Jiang, J., Chen, H., Zhou, H. and Song, D. (2021), "Seismic behavior of an innovative hybrid beam-column connection for precast concrete structures", Eng. Struct., 227, 111436. https://doi.org/10.1016/j.engstruct.2020.111436
  66. Youssf, O., Hassanli, R., Elchalakani, M., Mills, J.E., Tayeh, B.A. and Agwaa, I.S. (2023), "Punching Shear Behaviour and Repair Efficiency of Reinforced Eco-friendly Lightweight Concrete Slabs", Eng. Struct., 281, 115805. https://doi.org/10.1016/j.engstruct.2023.115805
  67. Zeyad, A.M. (2020), "Effect of fibers types on fresh properties and flexural toughness of self-compacting concrete", J. Mater. Res. Technol., 9(3), 4147-4158. https://doi.org/10.1016/j.jmrt.2020.02.042
  68. Zeyad, A.M., Hakeem, I.Y., Amin, M., Tayeh, B.A. and Agwa, I.S. (2022), "Effect of aggregate and fibre types on ultra-high-performance concrete designed for radiation shielding", J. Build. Eng., 58, 104960. https://doi.org/10.1016/j.jobe.2022.104960
  69. Zhang, Z., Li, W. and Yang, J. (2021), "Analysis of stochastic process to model safety risk in construction industry", J. Civil Eng. Manage., 27(2), 87-99. https://doi.org/10.3846/jcem.2021.14108
  70. Zhang, B., Feng, Y., Xie, J., He, J., Yu, T., Cai, C. and Huang, D. (2022a), "Compressive behaviours, splitting properties, and workability of lightweight cement concrete: The role of fibres", Constr. Build. Mater., 320, 126237. https://doi.org/10.1016/j.conbuildmat.2021.126237
  71. Zhang, H., Li, L., Ma, W., Luo, Y., Li, Z. and Kuai, H. (2022b), "Effects of welding residual stresses on fatigue reliability assessment of a PC beam bridge with corrugated steel webs under dynamic vehicle loading", In: Structures, Vol. 45, pp. 1561-1572. https://doi.org/10.1016/j.istruc.2022.09.094
  72. Zhang, H., Ouyang, Z., Li, L., Ma, W., Liu, Y., Chen, F. and Xiao, X. (2022c), "Numerical study on welding residual stress distribution of corrugated steel webs", Metals, 12(11), 1831. https://doi.org/10.3390/met12111831
  73. Zhang, Z., Liang, G., Niu, Q., Wang, F., Chen, J., Zhao, B. and Ke, L. (2022d), "A Wiener degradation process with drift-based approach of determining target reliability index of concrete structures", Quality Reliabil. Eng. Int., 38(7), 3710-3725. https://doi.org/10.1002/qre.3168
  74. Zhu, Q., Chen, J., Gou, G., Chen, H. and Li, P. (2017), "Ameliorated longitudinal critically refracted-Attenuation velocity method for welding residual stress measurement", J. Mater. Process. Technol., 246, 267-275. https://doi.org/10.1016/j.jmatprotec.2017.03.022