Acknowledgement
This study is supported via funding from Prince Satam bin Abdulaziz University project number (PSAU/2023/R/1444).
References
- Ackbarow, T., Chen, X., Keten, S. and Buehler, M.J. (2007), "Hierarchies, multiple energy barriers, and robustness govern the fracture mechanics of α-helical and β-sheet protein domains", Proceedings of the National Academy of Sciences, 104(42), 16410-16415. https://doi.org/10.1073/pnas.0705759104
- Alberts, B., Bray, D., Hopkin, K., Johnson, A.D., Lewis, J., Raff, M., Roberts, K. and Walter, P. (2013), Essential cell biology: Garland Science. https://doi.org/10.1016/S0307-4412(99)00089-8
- Alijani, M. and Bidgoli, M.R. (2018), "Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concrete Constr., Int. J., 6(6), 585-610. https://doi.org/10.12989/acc.2018.6.6.585
- AlSaleh, R.J. and Fuggini, C. (2020), "Combining GPS and accelerometers' records to capture torsional response of cylindrical tower", Smart Struct. Syst., Int. J., 25(1), 111. https://doi.org/10.12989/sss.2020.25.1.111
- Arefi, M. and Zenkour, A.M. (2017), "Nonlinear and linear thermo-elastic analyses of a functionally graded spherical shell using the Lagrange strain tensor", Smart Struct. Syst., Int. J., 19(1), 33-38. https://doi.org/10.12989/sss.2017.19.1.033
- Arani, A.G., Kolahchi, R. and Esmailpour, M. (2016), "Nonlinear vibration analysis of piezoelectric plates reinforced with carbon nanotubes using DQM", Smart Struct. Syst., Int. J., 18(4), 787-800. http://doi.org/10.12989/sss.2016.18.4.787
- Ashraf, M.A., Liu, Z., Zhang, D. and Pham, B.T. (2022), "Effects of elastic foundation on the large-amplitude vibration analysis of functionally graded GPL-RC annular sector plates", Eng. Comput., 1-21. https://doi.org/10.1007/s00366-020-01068-x
- Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Alhebshi, A.M., Al-ghmady, K. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., Int. J., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443
- Blobe, G.C., Schiemann, W.P. and Lodish, H.F. (2000), "Role of transforming growth factor β in human disease", New England J. Med., 342(18), 1350-1358. https://doi.org/10.1056/NEJM200005043421807
- Block, J., Schroeder, V., Pawelzyk, P., Willenbacher, N. and Koster, S. (2015), "Physical properties of cytoplasmic intermediate filaments", Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1853, 3053-3064. https://doi.org/10.1016/j.bbamcr.2015.05.009
- Bornheim, R., Muller, M., Reuter, U., Herrmann, H., Bussow, H. and Magin, T.M. (2008), "A dominant vimentin mutant upregulates Hsp70 and the activity of the ubiquitin-proteasome system, and causes posterior cataracts in transgenic mice", J. Cell Sci., 121(22), 3737-3746. https://doi.org/10.1242/jcs.030312
- Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., Int. J., 25(2), 197-218. https://doi.org/10.12989/sss.2020.25.2.197
- Cammarata, R.C. (1994), "Surface and interface stress effects in thin films", Progress Surface Sci., 46(1), 1-38. https://doi.org/10.1016/0079-6816(94)90005-1
- Chang, L. and Goldman, R.D. (2004), "Intermediate filaments mediate cytoskeletal crosstalk", Nature Rev. Molecul. Cell Biol., 5(8), 601-613. https://doi.org/10.1063/1.3050108
- Chen, T., Chiu, M.-S. and Weng, C.-N. (2006), "Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids", J. Appl. Phys., 100(7), 074308. https://doi.org/10.1063/1.3050108
- Civalek, O. and Demir, C. (2011), "Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory", Appl. Mathe. Modell., 35(5), 2053-2067. https://doi.org/10.1016/j.apm.2010.11.004
- Civalek, O., Demir, C. and Akgoz, B. (2010), "Free vibration and bending analyses of cantilever microtubules based on nonlocal continuum model", Mathe. Computat. Applicat., 15(2), 289-298. https://doi.org/10.3390/mca15020289
- Crewther, W., Dowling, L., Steinert, P. and Parry, D. (1983), "Structure of intermediate filaments", Int. J. Biol. Macromol., 5(5), 267-274. https://doi.org/10.1242/jcs.089516
- Cuenot, S., Fretigny, C., Demoustier-Champagne, S. and Nysten, B. (2004), "Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy", Phys. Rev. B, 69(16), 165410. https://doi.org/10.1103/PhysRevB.69.165410
- Demir, A.D. and Livaoglu, R. (2019), "The role of slenderness on the seismic behavior of ground-supported cylindrical silos", Adv. Concrete Constr., Int. J., 7(2), 65-74. https://doi.org/10.12989/acc.2019.7.2.065
- Esmaeili, M. and Tadi Beni, Y. (2019), "Vibration and buckling analysis of functionally graded flexoelectric smart beam", J. Appl. Computat. Mech., 5(5), 900-917. https://doi.org/10.22055/JACM.2019.27857.1439
- Franke, W.W., Schmid, E., Osborn, M. and Weber, K. (1978), "Different intermediate-sized filaments distinguished by immunofluorescence microscopy", Proceedings of the National Academy of Sciences, 75(10), 5034-5038. https://doi.org/10.1073/pnas.75.10.5034
- Fletcher, D.A. and Mullins, R.D. (2010), "Cell mechanics and the cytoskeleton", Nature, 463, 485. https://doi.org/10.1038/nature08908
- Fuchs, E. and Weber, K. (1994), "Intermediate filaments: structure, dynamics, function and disease", Annual Rev. Biochem., 63(1), 345-382. https://doi.org/10.1016/S0014-5793(98)01190-9
- Fudge, D.S., Gardner, K.H., Forsyth, V.T., Riekel, C. and Gosline, J.M. (2003), "The mechanical properties of hydrated intermediate filaments: insights from hagfish slime threads", Biophys. J., 85(3), 2015-2027. https://doi.org/10.1242/jeb.02067
- Gao, Y. and Lei, F.-M. (2009), "Small scale effects on the mechanical behaviors of protein microtubules based on the nonlocal elasticity theory", Bioche. Biophys. Res. Commun., 387(3), 467-471. https://doi.org/10.1021/nl025724i
- Gibbs, J.W. (1906), The scientific papers of J. Willard Gibbs (Vol. 1): Longmans, Green and Company.
- Gittes, F., Mickey, B., Nettleton, J. and Howard, J. (1993), "Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape", J. Cell Biol., 120(4), 923-934. https://doi.org/10.1016/j.jmb.2012.08.006
- Goldman, R.D., Khuon, S., Chou, Y.H., Opal, P. and Steinert, P.M. (1996), "The function of intermediate filaments in cell shape and cytoskeletal integrity", J. Cell Biol., 134(4), 971-983. https://doi.org/10.1083/jcb.134.4.971
- Goldman, R.D., Cleland, M.M., Murthy, S.P., Mahammad, S. and Kuczmarski, E.R. (2012), "Inroads into the structure and function of intermediate filament networks", J. Struct. Biol., 177(1), 14-23. https://doi.org/10.1016/j.jsb.2011.11.017
- Green, K.J., Virata, M.L.A., Elgart, G.W., Stanley, J.R. and Parry, D.A. (1992), "Comparative structural analysis of desmoplakin, bullous pemphigoid antigen and plectin: members of a new gene family involved in organization of intermediate filaments", Int. J. Biol. Macromol., 14(3), 145-153. https://doi.org/10.1016/s0141-8130(05)80004-2
- Gruenbaum, Y., Margalit, A., Goldman, R.D., Shumaker, D.K. and Wilson, K.L. (2005), "The nuclear lamina comes of age", Nature Rev. Molecular Cell Biol., 6(1), 21-31. https://doi.org/10.1053/j.gastro.2018.03.026
- Gurtin, M., Weissmuller, J. and Larche, F. (1998), "A general theory of curved deformable interfaces in solids at equilibrium", Philosophical Magazine A, 78(5), 1093-1109. http://dx.doi.org/10.1155/2011/518706
- Guzman, C., Jeney, S., Kreplak, L., Kasas, S., Kulik, A., Aebi, U. and Forro, L. (2006), "Exploring the mechanical properties of single vimentin intermediate filaments by atomic force microscopy", J. Molecular Biol., 360(3), 623-630. https://doi.org/10.1016/j.jmb.2006.05.030
- Hanukoglu, I. and Ezra, L. (2014), "Proteopedia entry: Coiled-coil structure of keratins", Biochem. Molecular Biol. Edu., 42(1), 93-94. https://doi.org/10.1002/bmb.20746
- Hanukoglu, I. and Fuchs, E. (1983), "The cDNA sequence of a type II cytoskeletal keratin reveals constant and variable structural domains among keratins", Cell, 33(3), 915-924. https://doi.org/10.1016/0092-8674(83)90034-X
- Herrmann, H., Bar, H., Kreplak, L., Strelkov, S.V. and Aebi, U. (2007), "Intermediate filaments: from cell architecture to nanomechanics", Nature Rev. Molecular Cell Biol., 8(7), 562-573. https://doi.org/10.1038/ncb1886
- Hutchinson, J. (2001), "Shear coefficients for Timoshenko beam theory", J. Appl. Mech., 68(1), 87-92. https://doi.org/10.1115/1.1349417
- Ishikawa, H., Bischoff, R. and Holtzer, H. (1968), "Mitosis and intermediate-sized filaments in developing skeletal muscle", J. Cell Biol., 38(3), 538-555. https://doi.org/10.1016/0012
- Kagimoto, H., Yasuda, Y. and Kawamura, M. (2015), "Mechanisms of ASR surface cracking in a massive concrete cylinder", Adv. Concrete Constr., Int. J., 3(1), 39-54. https://doi.org/10.12989/acc.2015.3.1.039
- Krommer, M., Vetyukova, Y. and Staudigl, E. (2016), "Nonlinear modelling and analysis of thin piezoelectric plates: buckling and post-buckling behavior", Smart Struct. Syst., Int. J., 18(1), 155-181. https://doi.org/10.12989/sss.2016.18.1.155
- Lee, C.-H., Kim, M.-S., Chung, B.M., Leahy, D.J. and Coulombe, P.A. (2012), "Structural basis for heteromeric assembly and perinuclear organization of keratin filaments", Nature Struct. Molecul. Biol., 19(7), 707. https://doi.org/10.1038/nsmb.2330"10.1038/nsmb.2330
- Mesbah, H.A. and Benzaid, R. (2017), "Damage-based stressstrain model of RC cylinders wrapped with CFRP composites", Adv. Concrete Constr., Int. J., 5(5), 539-561. https://doi.org/10.12989/acc.2017.5.5.539
- Miller, R.E. and Shenoy, V.B. (2000), "Size-dependent elastic properties of nanosized structural elements", Nanotechnology, 11, 139. https://doi.org/10.108/0957-4484/11/3/301
- Pham, Q.H., Pham, T.D., Trinh, Q.V. and Phan, D.H. (2020), "Geometrically nonlinear analysis of functionally graded shells using an edge-based smoothed MITC3 (ES-MITC3) finite elements", Eng. Comput., 36(3), 1069-1082. https://doi.org/10.1007/s00366-019-00750-z
- Qie, N., Houa, W.F. and He, J.H. (2021), "The fastest insight into the large amplitude vibration of a string", Reports Mech. Eng., 2(1), 1-5. https://doi.org/10.31181/rme200102001q
- Qin, Z., Kreplak, L. and Buehler, M.J. (2009), "Hierarchical structure controls nanomechanical properties of vimentin intermediate filaments", PloS one, 4(10), e7294. https://doi.org/10.1371/journal.pone.0007294
- Ramm, B., Stigler, J., Hinczewski, M., Thirumalai, D., Herrmann, H., Woehlke, G. and Rief, M. (2014), "Sequence-resolved free energy profiles of stress-bearing vimentin intermediate filaments", Proceedings of the National Academy of Sciences, 111, 11359-11364. https://doi.org/10.1073/pnas.1403122111
- Rysaeva, L.K., Bachurin, D.V., Murzaev, R.T., Abdullina, D.U., Korznikova, E.A., Mulyukov, R.R. and Dmitriev, S.V. (2020), "Evolution of the carbon nanotube bundle structure under biaxial and shear strains", Facta Universitatis, Series: Mech. Eng., 18(4), 525-536. https://doi.org/10.22190/FUME201005043R
- Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., Int. J., 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265
- Salamat, D. and Sedighi, H.M. (2017), "The effect of small scale on the vibrational behavior of single-walled carbon nanotubes with a moving nanoparticle", J. Appl. Computat. Mech., 3(3), 208-217. https://doi.org/10.22055/jacm.2017.12740
- Samadvand, H. and Dehestani, M. (2020), "A stress-function variational approach toward CFRP-concrete interfacial stresses in bonded joints", Adv. Concrete Constr., Int. J., 9(1),43-54. https://doi.org/10.12989/acc.2020.9.1.043
- Shariati, A., Jung, D.W., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020), "Stability and dynamics of viscoelastic moving rayleigh beams with an asymmetrical distribution of material parameters", Symmetry, 12(4), 586. https://doi.org/10.3390/sym12040586
- Soltys, B.J. and Gupta, R.S. (1992), "Interrelationships of endoplasmic reticulum, mitochondria, intermediate filaments, and microtubules-a quadruple fluorescence labeling study", Biochem. Cell Biol., 70(10-11), 1174-1186. https://doi.org/10.1139/o92-163
- Strelkov, S.V., Herrmann, H. and Aebi, U. (2003), "Molecular architecture of intermediate filaments", Bioessays, 25, 243-251. https://doi.org/10.1002/bies.10246
- Timoshenko, S.P. and Gere, J.M. (2009), Theory of elastic stability, Courier Corporation.
- Wang, Q., Tolstonog, G.V., Shoeman, R. and Traub, P. (2001), "Sites of Nucleic Acid Binding in Type I- IV Intermediate Filament Subunit Proteins", Biochemistry, 40(34), 10342-10349. https://doi.org/10.1021/bi0108305
- Wang, C., Li, C. and Adhikari, S. (2009), "Dynamic behaviors of microtubules in cytosol", J. Biomech., 42(9), 1270-1274. https://doi.org/10.1016/j.jbiomech.2009.03.027
- Yeh, J.Y. (2016), "Vibration characteristic analysis of sandwich cylindrical shells with MR elastomer", Smart Struct. Syst., Int. J., 18(2), 233-247. https://doi.org/10.12989/sss.2016.18.2.233