DOI QR코드

DOI QR Code

Buckling behavior of intermediate filaments based on Euler Bernoulli and Timoshenko beam theories

  • Muhammad Taj (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Muzamal Hussain (Department of Mathematics, Govt. College University Faisalabad) ;
  • Mohamed A. Khadimallah (Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University) ;
  • Muhammad Safeer (Department of Mathematics University of Poonch Rawalwkot) ;
  • S.R. Mahmoud (GRC Department, Faculty of Applied Studies, King Abdulaziz University) ;
  • Zafer Iqbal (Department of Mathematics, University of Sargodha) ;
  • Mohamed R. Ali (Faculty of Engineering and Technology, Future University in Egypt New Cairo ) ;
  • Aqib Majeed (Department of Mathematics, The University of Faisalabad) ;
  • Manzoor Ahmad (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Abdelouahed Tounsi (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2020.05.01
  • Accepted : 2023.03.04
  • Published : 2023.03.25

Abstract

Cytoskeleton components play key role in maintaining cell structure and in giving shape to the cell. These components include microtubules, microfilaments and intermediate filaments. Among these filaments intermediate filaments are the most rigid and bear large compressive force. Actually, these filaments are surrounded by other filaments like microtubules and microfilaments. This network of filaments makes a layer as a surface on intermediate filaments that have great impact on buckling behavior of intermediate filaments. In the present article, buckling behavior of intermediate filaments is studied by taking into account the effects of surface by using Euler Bernoulli and Timoshenko beam theories. It is found that effects of surface greatly affect the critical buckling force of intermediate filaments. Further, it is observed that the critical buckling force is inversely proportional to the length of filament. Such types of observations are helpful for further analysis of nanofibrous in their actual environments within the cell.

Keywords

Acknowledgement

This study is supported via funding from Prince Satam bin Abdulaziz University project number (PSAU/2023/R/1444).

References

  1. Ackbarow, T., Chen, X., Keten, S. and Buehler, M.J. (2007), "Hierarchies, multiple energy barriers, and robustness govern the fracture mechanics of α-helical and β-sheet protein domains", Proceedings of the National Academy of Sciences, 104(42), 16410-16415. https://doi.org/10.1073/pnas.0705759104
  2. Alberts, B., Bray, D., Hopkin, K., Johnson, A.D., Lewis, J., Raff, M., Roberts, K. and Walter, P. (2013), Essential cell biology: Garland Science. https://doi.org/10.1016/S0307-4412(99)00089-8
  3. Alijani, M. and Bidgoli, M.R. (2018), "Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concrete Constr., Int. J., 6(6), 585-610. https://doi.org/10.12989/acc.2018.6.6.585
  4. AlSaleh, R.J. and Fuggini, C. (2020), "Combining GPS and accelerometers' records to capture torsional response of cylindrical tower", Smart Struct. Syst., Int. J., 25(1), 111. https://doi.org/10.12989/sss.2020.25.1.111
  5. Arefi, M. and Zenkour, A.M. (2017), "Nonlinear and linear thermo-elastic analyses of a functionally graded spherical shell using the Lagrange strain tensor", Smart Struct. Syst., Int. J., 19(1), 33-38. https://doi.org/10.12989/sss.2017.19.1.033
  6. Arani, A.G., Kolahchi, R. and Esmailpour, M. (2016), "Nonlinear vibration analysis of piezoelectric plates reinforced with carbon nanotubes using DQM", Smart Struct. Syst., Int. J., 18(4), 787-800. http://doi.org/10.12989/sss.2016.18.4.787
  7. Ashraf, M.A., Liu, Z., Zhang, D. and Pham, B.T. (2022), "Effects of elastic foundation on the large-amplitude vibration analysis of functionally graded GPL-RC annular sector plates", Eng. Comput., 1-21. https://doi.org/10.1007/s00366-020-01068-x
  8. Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Alhebshi, A.M., Al-ghmady, K. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., Int. J., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443
  9. Blobe, G.C., Schiemann, W.P. and Lodish, H.F. (2000), "Role of transforming growth factor β in human disease", New England J. Med., 342(18), 1350-1358. https://doi.org/10.1056/NEJM200005043421807
  10. Block, J., Schroeder, V., Pawelzyk, P., Willenbacher, N. and Koster, S. (2015), "Physical properties of cytoplasmic intermediate filaments", Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1853, 3053-3064. https://doi.org/10.1016/j.bbamcr.2015.05.009
  11. Bornheim, R., Muller, M., Reuter, U., Herrmann, H., Bussow, H. and Magin, T.M. (2008), "A dominant vimentin mutant upregulates Hsp70 and the activity of the ubiquitin-proteasome system, and causes posterior cataracts in transgenic mice", J. Cell Sci., 121(22), 3737-3746. https://doi.org/10.1242/jcs.030312
  12. Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., Int. J., 25(2), 197-218. https://doi.org/10.12989/sss.2020.25.2.197
  13. Cammarata, R.C. (1994), "Surface and interface stress effects in thin films", Progress Surface Sci., 46(1), 1-38. https://doi.org/10.1016/0079-6816(94)90005-1
  14. Chang, L. and Goldman, R.D. (2004), "Intermediate filaments mediate cytoskeletal crosstalk", Nature Rev. Molecul. Cell Biol., 5(8), 601-613. https://doi.org/10.1063/1.3050108
  15. Chen, T., Chiu, M.-S. and Weng, C.-N. (2006), "Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids", J. Appl. Phys., 100(7), 074308. https://doi.org/10.1063/1.3050108
  16. Civalek, O. and Demir, C. (2011), "Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory", Appl. Mathe. Modell., 35(5), 2053-2067. https://doi.org/10.1016/j.apm.2010.11.004
  17. Civalek, O., Demir, C. and Akgoz, B. (2010), "Free vibration and bending analyses of cantilever microtubules based on nonlocal continuum model", Mathe. Computat. Applicat., 15(2), 289-298. https://doi.org/10.3390/mca15020289
  18. Crewther, W., Dowling, L., Steinert, P. and Parry, D. (1983), "Structure of intermediate filaments", Int. J. Biol. Macromol., 5(5), 267-274. https://doi.org/10.1242/jcs.089516
  19. Cuenot, S., Fretigny, C., Demoustier-Champagne, S. and Nysten, B. (2004), "Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy", Phys. Rev. B, 69(16), 165410. https://doi.org/10.1103/PhysRevB.69.165410
  20. Demir, A.D. and Livaoglu, R. (2019), "The role of slenderness on the seismic behavior of ground-supported cylindrical silos", Adv. Concrete Constr., Int. J., 7(2), 65-74. https://doi.org/10.12989/acc.2019.7.2.065
  21. Esmaeili, M. and Tadi Beni, Y. (2019), "Vibration and buckling analysis of functionally graded flexoelectric smart beam", J. Appl. Computat. Mech., 5(5), 900-917. https://doi.org/10.22055/JACM.2019.27857.1439
  22. Franke, W.W., Schmid, E., Osborn, M. and Weber, K. (1978), "Different intermediate-sized filaments distinguished by immunofluorescence microscopy", Proceedings of the National Academy of Sciences, 75(10), 5034-5038. https://doi.org/10.1073/pnas.75.10.5034
  23. Fletcher, D.A. and Mullins, R.D. (2010), "Cell mechanics and the cytoskeleton", Nature, 463, 485. https://doi.org/10.1038/nature08908
  24. Fuchs, E. and Weber, K. (1994), "Intermediate filaments: structure, dynamics, function and disease", Annual Rev. Biochem., 63(1), 345-382. https://doi.org/10.1016/S0014-5793(98)01190-9
  25. Fudge, D.S., Gardner, K.H., Forsyth, V.T., Riekel, C. and Gosline, J.M. (2003), "The mechanical properties of hydrated intermediate filaments: insights from hagfish slime threads", Biophys. J., 85(3), 2015-2027. https://doi.org/10.1242/jeb.02067
  26. Gao, Y. and Lei, F.-M. (2009), "Small scale effects on the mechanical behaviors of protein microtubules based on the nonlocal elasticity theory", Bioche. Biophys. Res. Commun., 387(3), 467-471. https://doi.org/10.1021/nl025724i
  27. Gibbs, J.W. (1906), The scientific papers of J. Willard Gibbs (Vol. 1): Longmans, Green and Company.
  28. Gittes, F., Mickey, B., Nettleton, J. and Howard, J. (1993), "Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape", J. Cell Biol., 120(4), 923-934. https://doi.org/10.1016/j.jmb.2012.08.006
  29. Goldman, R.D., Khuon, S., Chou, Y.H., Opal, P. and Steinert, P.M. (1996), "The function of intermediate filaments in cell shape and cytoskeletal integrity", J. Cell Biol., 134(4), 971-983. https://doi.org/10.1083/jcb.134.4.971
  30. Goldman, R.D., Cleland, M.M., Murthy, S.P., Mahammad, S. and Kuczmarski, E.R. (2012), "Inroads into the structure and function of intermediate filament networks", J. Struct. Biol., 177(1), 14-23. https://doi.org/10.1016/j.jsb.2011.11.017
  31. Green, K.J., Virata, M.L.A., Elgart, G.W., Stanley, J.R. and Parry, D.A. (1992), "Comparative structural analysis of desmoplakin, bullous pemphigoid antigen and plectin: members of a new gene family involved in organization of intermediate filaments", Int. J. Biol. Macromol., 14(3), 145-153. https://doi.org/10.1016/s0141-8130(05)80004-2
  32. Gruenbaum, Y., Margalit, A., Goldman, R.D., Shumaker, D.K. and Wilson, K.L. (2005), "The nuclear lamina comes of age", Nature Rev. Molecular Cell Biol., 6(1), 21-31. https://doi.org/10.1053/j.gastro.2018.03.026
  33. Gurtin, M., Weissmuller, J. and Larche, F. (1998), "A general theory of curved deformable interfaces in solids at equilibrium", Philosophical Magazine A, 78(5), 1093-1109. http://dx.doi.org/10.1155/2011/518706
  34. Guzman, C., Jeney, S., Kreplak, L., Kasas, S., Kulik, A., Aebi, U. and Forro, L. (2006), "Exploring the mechanical properties of single vimentin intermediate filaments by atomic force microscopy", J. Molecular Biol., 360(3), 623-630. https://doi.org/10.1016/j.jmb.2006.05.030
  35. Hanukoglu, I. and Ezra, L. (2014), "Proteopedia entry: Coiled-coil structure of keratins", Biochem. Molecular Biol. Edu., 42(1), 93-94. https://doi.org/10.1002/bmb.20746
  36. Hanukoglu, I. and Fuchs, E. (1983), "The cDNA sequence of a type II cytoskeletal keratin reveals constant and variable structural domains among keratins", Cell, 33(3), 915-924. https://doi.org/10.1016/0092-8674(83)90034-X
  37. Herrmann, H., Bar, H., Kreplak, L., Strelkov, S.V. and Aebi, U. (2007), "Intermediate filaments: from cell architecture to nanomechanics", Nature Rev. Molecular Cell Biol., 8(7), 562-573. https://doi.org/10.1038/ncb1886
  38. Hutchinson, J. (2001), "Shear coefficients for Timoshenko beam theory", J. Appl. Mech., 68(1), 87-92. https://doi.org/10.1115/1.1349417
  39. Ishikawa, H., Bischoff, R. and Holtzer, H. (1968), "Mitosis and intermediate-sized filaments in developing skeletal muscle", J. Cell Biol., 38(3), 538-555. https://doi.org/10.1016/0012
  40. Kagimoto, H., Yasuda, Y. and Kawamura, M. (2015), "Mechanisms of ASR surface cracking in a massive concrete cylinder", Adv. Concrete Constr., Int. J., 3(1), 39-54. https://doi.org/10.12989/acc.2015.3.1.039
  41. Krommer, M., Vetyukova, Y. and Staudigl, E. (2016), "Nonlinear modelling and analysis of thin piezoelectric plates: buckling and post-buckling behavior", Smart Struct. Syst., Int. J., 18(1), 155-181. https://doi.org/10.12989/sss.2016.18.1.155
  42. Lee, C.-H., Kim, M.-S., Chung, B.M., Leahy, D.J. and Coulombe, P.A. (2012), "Structural basis for heteromeric assembly and perinuclear organization of keratin filaments", Nature Struct. Molecul. Biol., 19(7), 707. https://doi.org/10.1038/nsmb.2330"10.1038/nsmb.2330
  43. Mesbah, H.A. and Benzaid, R. (2017), "Damage-based stressstrain model of RC cylinders wrapped with CFRP composites", Adv. Concrete Constr., Int. J., 5(5), 539-561. https://doi.org/10.12989/acc.2017.5.5.539
  44. Miller, R.E. and Shenoy, V.B. (2000), "Size-dependent elastic properties of nanosized structural elements", Nanotechnology, 11, 139. https://doi.org/10.108/0957-4484/11/3/301
  45. Pham, Q.H., Pham, T.D., Trinh, Q.V. and Phan, D.H. (2020), "Geometrically nonlinear analysis of functionally graded shells using an edge-based smoothed MITC3 (ES-MITC3) finite elements", Eng. Comput., 36(3), 1069-1082. https://doi.org/10.1007/s00366-019-00750-z
  46. Qie, N., Houa, W.F. and He, J.H. (2021), "The fastest insight into the large amplitude vibration of a string", Reports Mech. Eng., 2(1), 1-5. https://doi.org/10.31181/rme200102001q
  47. Qin, Z., Kreplak, L. and Buehler, M.J. (2009), "Hierarchical structure controls nanomechanical properties of vimentin intermediate filaments", PloS one, 4(10), e7294. https://doi.org/10.1371/journal.pone.0007294
  48. Ramm, B., Stigler, J., Hinczewski, M., Thirumalai, D., Herrmann, H., Woehlke, G. and Rief, M. (2014), "Sequence-resolved free energy profiles of stress-bearing vimentin intermediate filaments", Proceedings of the National Academy of Sciences, 111, 11359-11364. https://doi.org/10.1073/pnas.1403122111
  49. Rysaeva, L.K., Bachurin, D.V., Murzaev, R.T., Abdullina, D.U., Korznikova, E.A., Mulyukov, R.R. and Dmitriev, S.V. (2020), "Evolution of the carbon nanotube bundle structure under biaxial and shear strains", Facta Universitatis, Series: Mech. Eng., 18(4), 525-536. https://doi.org/10.22190/FUME201005043R
  50. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., Int. J., 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265
  51. Salamat, D. and Sedighi, H.M. (2017), "The effect of small scale on the vibrational behavior of single-walled carbon nanotubes with a moving nanoparticle", J. Appl. Computat. Mech., 3(3), 208-217. https://doi.org/10.22055/jacm.2017.12740
  52. Samadvand, H. and Dehestani, M. (2020), "A stress-function variational approach toward CFRP-concrete interfacial stresses in bonded joints", Adv. Concrete Constr., Int. J., 9(1),43-54. https://doi.org/10.12989/acc.2020.9.1.043
  53. Shariati, A., Jung, D.W., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020), "Stability and dynamics of viscoelastic moving rayleigh beams with an asymmetrical distribution of material parameters", Symmetry, 12(4), 586. https://doi.org/10.3390/sym12040586
  54. Soltys, B.J. and Gupta, R.S. (1992), "Interrelationships of endoplasmic reticulum, mitochondria, intermediate filaments, and microtubules-a quadruple fluorescence labeling study", Biochem. Cell Biol., 70(10-11), 1174-1186. https://doi.org/10.1139/o92-163
  55. Strelkov, S.V., Herrmann, H. and Aebi, U. (2003), "Molecular architecture of intermediate filaments", Bioessays, 25, 243-251. https://doi.org/10.1002/bies.10246
  56. Timoshenko, S.P. and Gere, J.M. (2009), Theory of elastic stability, Courier Corporation.
  57. Wang, Q., Tolstonog, G.V., Shoeman, R. and Traub, P. (2001), "Sites of Nucleic Acid Binding in Type I- IV Intermediate Filament Subunit Proteins", Biochemistry, 40(34), 10342-10349. https://doi.org/10.1021/bi0108305
  58. Wang, C., Li, C. and Adhikari, S. (2009), "Dynamic behaviors of microtubules in cytosol", J. Biomech., 42(9), 1270-1274. https://doi.org/10.1016/j.jbiomech.2009.03.027
  59. Yeh, J.Y. (2016), "Vibration characteristic analysis of sandwich cylindrical shells with MR elastomer", Smart Struct. Syst., Int. J., 18(2), 233-247. https://doi.org/10.12989/sss.2016.18.2.233