Acknowledgement
Financial supports from the Key Science and Technology Program of Henan Province, China (No. 202102310253), the Youth Key Teacher Project of Henan Provincial Colleges and Universities (2017GGJS054), Joint Funds of the National Natural Science Foundation of China (No. U1904188), the Doctor Foundation of Henan Polytechnic University (No. B2016-67), and the Science and Technology Project of Henan Provincial Department of Transportation, China (No. 2019J-2-13) are gratefully appreciated. Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request. All data, models, and code generated or used during the study appear in the submitted article.
References
- Abdel-Gawwad, H.A., Rashad, A.M. and Heikal, M. (2019), "Sustainable utilization of pretreated concrete waste in the production of one-part alkali-activated cement", J. Clean. Prod., 232, 318-328. https://doi.org/10.1016/j.jclepro.2019.05.356
- Abdulkareem, M., Havukainen, J., Nuortila-Jokinen, J. and Horttanainen, M. (2021), "Environmental and economic perspective of waste-derived activators on alkali-activated mortars", J. Clean. Prod., 280, 124651. https://doi.org/10.1016/j.jclepro.2020.124651
- Ali, B., Gulzar, M.A. and Raza, A. (2021), "Effect of sulfate activation of fly ash on mechanical and durability properties of recycled aggregate concrete", Constr. Build. Mater., 277, 122329. https://doi.org/10.1016/j.conbuildmat.2021.122329
- Alnahhal, M.F., Kim, T. and Hajimohammadi, A. (2021), "Waste-derived activators for alkali-activated materials: A review", Cem. Concr. Compos., 118, 103980. https://doi.org/10.1016/j.cemconcomp.2021.103980
- Amer, I., Kohail, M., El-Feky, M.S., Rashad, A. and Khalaf, M.A. (2021a), "A review on alkali-activated slag concrete", Ain Shams Eng. J., 12(2), 1475-1499. https://doi.org/10.1016/j.asej.2020.12.003
- Amer, I., Kohail, M., El-Feky, M.S., Rashad, A. and Khalaf, M.A. (2021b), "Characterization of alkali-activated hybrid slag/cement concrete", Ain Shams Eng. J., 12(1), 135-144. https://doi.org/10.1016/j.asej.2020.08.003
- Chen, W., Li, B., Wang, J. and Thom, N. (2021), "Effects of alkali dosage and silicate modulus on autogenous shrinkage of alkali-activated slag cement paste", Cem. Concr. Res., 141, 106322. https://doi.org/10.1016/j.cemconres.2020.106322
- Coppola, L., Coffetti, D., Crotti, E., Gazzaniga, G. and Pastore, T. (2020), "The durability of one-part alkali-activated slag-based mortars in different environments", Sustainability, 12(9), 3561. https://doi.org/10.3390/su12093561
- Fang, S., Lam, E.S.S., Li, B. and Wu, B. (2020), "Effect of alkali contents, moduli and curing time on engineering properties of alkali activated slag", Constr. Build. Mater., 249, 118799. https://doi.org/10.1016/j.conbuildmat.2020.118799
- Jia, R. (2018), "Experimental Research on Removal of Turbidity and UV254 by Poly-aluminum Chloride (PAC)", E3S Web of Conferences, 53(3), 04006. https://doi.org/10.1051/e3sconf/20185304006
- Kilic, I. and Gok, S.G. (2021), "A study on investigating the properties of alkali-activated roller compacted concretes", Adv. Concrete Constr., Int. J., 12(2), 117-123. https://doi.org/10.12989/acc.2021.12.2.117
- Gavali, H.R., Bras, A., Faria, P. and Ralegaonkar, R.V. (2019), "Development of sustainable alkali-activated bricks using industrial wastes", Constr. Build. Mater., 215, 180-191. https://doi.org/10.1016/j.conbuildmat.2019.04.152
- Guo, J., Zhou, Z., Ming, Q., Huang, Z., Zhu, J., Zhang, S., Xu, J., Xi, J., Zhao, Q. and Zhao, X. (2022), "Recovering precipitates from dechlorination process of saline wastewater as poly aluminum chloride", Chem. Eng. J., 427, 131612. https://doi.org/10.1016/j.cej.2021.131612
- Liu, Y., Shi, C., Zhang, Z. and Li, N. (2019), "An overview on the reuse of waste glasses in alkali-activated materials", Resour. Conserv. Recy., 144, 297-309. https://doi.org/10.1016/j.resconrec.2019.02.007
- Lu, C., Zhang, Z., Shi, C., Li, N., Jiao, D. and Yuan, Q. (2021), "Rheology of alkali-activated materials: A review", Cem. Concr. Compos., 121, 104061. https://doi.org/10.1016/j.cemconcomp.2021.104061
- Ma, C., Zhao, B., Wang, L., Long, G. and Xie, Y. (2020), "Clean and low-alkalinity one-part geopolymeric cement: effects of sodium sulfate on microstructure and properties", J. Clean. Prod., 252, 119279. https://doi.org/10.1016/j.jclepro.2019.119279
- Marvila, M.T., Azevedo, A.R.G.D., Matos, P.R.D., Monteiro, S.N. and Vieira, C.M.F. (2021), "Rheological and the fresh state properties of alkali-activated mortars by blast furnace slag", Mater., 14(8), 2069. https://doi.org/10.3390/ma14082069
- Mohamed, O.A. (2019), "A review of durability and strength characteristics of alkali-activated slag concrete", Mater., 12(8), 1198. https://doi.org/10.3390/ma12081198
- Moodi, F., Norouzi, S. and Dashti, P. (2021), "Mechanical properties and durability of alkali-activated slag repair mortars containing silica fume against freeze-thaw cycles and salt scaling attack", Adv. Concrete Constr., Int. J., 11(6), 493-505. https://doi.org/10.12989/acc.2021.11.6.493
- Nawaz, M.A., Ali, B., Qureshi, L.A., Aslam, H.M.U., Hussain, I., Masood, B. and Raza, S.S. (2020), "Effect of sulfate activator on mechanical and durability properties of concrete incorporating low calcium fly ash", Case Stud. Constr. Mater., 13, e407. https://doi.org/10.1016/j.cscm.2020.e00407
- Nasir, M., Johari, M.A.M., Yusuf, M.O., Maslehuddin, M. and Al-Harthi, M.A. (2020), "Effect of alkaline activators on the fresh properties and strength of silico-manganese fume-slag activated mortar", Adv. Concrete Constr., Int. J., 10(5), 403-416. https://doi.org/10.12989/acc.2020.10.5.403
- Rakhimova, N.R. and Rakhimov, R.Z. (2019), "Reaction products, structure and properties of alkali-activated metakaolin cements incorporated with supplementary materials-a review", J. Mater. Sci. Technol., 8(1), 1522-1531. https://doi.org/10.1016/j.jmrt.2018.07.006
- Ruengsillapanun, K., Udtaranakron, T., Pulngern, T., Tangchirapat, W. and Jaturapitakkul, C. (2021), "Mechanical properties, shrinkage, and heat evolution of alkali activated fly ash concrete", Constr. Build. Mater., 299, 123954. https://doi.org/10.1016/j.conbuildmat.2021.123954
- Song, Q., Guo, M.Z. and Ling, T.C. (2022), "A review of elevated-temperature properties of alternative binders: Supplementary cementitious materials and alkali-activated materials", Constr. Build. Mater., 341, 127894. https://doi.org/10.1016/j.conbuildmat.2022.127894
- Sun, J., Zhang, Z., Zhuang, S. and He, W. (2020), "Hydration properties and microstructure characteristics of alkali-activated steel slag", Constr. Build. Mater., 241, 118141. https://doi.org/10.1016/j.conbuildmat.2020.118141
- Tong, S., Yuqi, Z. and Qiang, W. (2021), "Recent advances in chemical admixtures for improving the workability of alkali-activated slag-based material systems", Constr. Build. Mater., 272, 121647. https://doi.org/10.1016/j.conbuildmat.2020.121647
- Wei, H., Gao, B., Ren, J., Li, A. and Yang, H. (2018), "Coagulation/flocculation in dewatering of sludge: a review", Water Res., 143, 608-631. https://doi.org/10.1016/j.watres.2018.07.029
- You, N., Li, B., Cao, R., Shi, J., Chen, C. and Zhang, Y. (2019), "The influence of steel slag and ferronickel slag on the properties of alkali-activated slag mortar", Constr. Build. Mater., 227, 116614. https://doi.org/10.1016/j.conbuildmat.2019.07.340
- Zhang, Q., Ji, T., Yang, Z., Wang, C. and Wu, H. (2020), "Influence of different activators on microstructure and strength of alkali-activated nickel slag cementitious materials", Constr. Build. Mater., 235, 117449. https://doi.org/10.1016/j.jclepro.2022.135547
- Zhao, Q., Ma, C., Huang, B. and Lu, X. (2023), "Development of alkali activated cementitious material from sewage sludge ash: Two-part and one-part geopolymer", J. Clean. Prod., 384, 135547. https://doi.org/10.1016/j.jclepro.2022.135547