DOI QR코드

DOI QR Code

Synergistic Growth Inhibition of Herbal Plant Extract Combinations against Candida albicans

  • Jeemin YOON (Department of Forest Products and Biotechnology, Kookmin University) ;
  • Tae-Jong KIM (Department of Forest Products and Biotechnology, Kookmin University)
  • 투고 : 2022.12.01
  • 심사 : 2023.01.31
  • 발행 : 2023.03.25

초록

Many skin diseases are caused by microbial infections. Representative pathogenic fungus and bacterium that cause skin diseases are Candida albicans and Staphylococcus aureus, respectively. Malassezia pachydermatis is a fungus that causes animal skin diseases. In this study, we propose a method for removing pathogenic microorganisms from the skin using relatively safe edible herbal extracts. Herbal extracts were screened for skin health through the removal of pathogenic microorganisms, and combinations for effective utilization of the screened extracts were identified. In this study, among methanol extracts of 240 edible plants, C. albicans, S. aureus, and M. pachydermatis were killed by extracts of 10 plants: Acori Gramineri Rhizoma, Angelicae Tenuissimae Radix, Cinnamomi Cortex, Cinnamomi Ramulus, Impatientis Semen, Magnoliae Cortex, Moutan Cortex Radicis, Phellodendri Cortex, Scutellariae Radix, and Syzygii Flos. By evaluating the synergistic antifungal activities against C. albicans using all 45 possible combinations of these 10 extracts, five new synergistic antifungal combinations, Acori Gramineri Rhizoma with Magnoliae Cortex extracts, Acori Gramineri Rhizoma with Phellodendri Cortex extracts, Angelicae Tenuissimae Radix with Magnoliae Cortex extracts, Magnoliae Cortex with Phellodendri Cortex extracts, and Phellodendri Cortex with Syzygii Flos extracts, were identified. By utilizing the selected extracts and five combinations with synergistic antifungal effects, this work provides materials and methods to develop new and safe methods for treating candidiasis using natural products.

키워드

과제정보

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT (MSIT) (No. 2021R1F1A1061888).

참고문헌

  1. Adfa, M., Romayasa, A., Kusnanda, A.J., Avidlyandi, A., Yudha, S.S., Banon, C., Gustian, I. 2020. Chemical components, antitermite and antifungal activities of Cinnamomum parthenoxylon wood vinegar. Journal of the Korean Wood Science and Technology 48(1): 107-116. https://doi.org/10.5658/WOOD.2020.48.1.107
  2. Augostine, C.R., Avery, S.V. 2022. Discovery of natural products with antifungal potential through combinatorial synergy. Frontiers in Microbiology 13: 866840.
  3. Beck-Sague, C.M., Jarvis, W.R., National Nosocomial Infections Surveillance System. 1993. Secular trends in the epidemiology of nosocomial fungal infections in the United States, 1980-1990. The Journal of Infectious Diseases 167(5): 1247-1251. https://doi.org/10.1093/infdis/167.5.1247
  4. Calderone, R.A., Clancy, C.J. 2011. Candida and Candidiasis. American Society for Microbiology Press, Washington, DC, USA.
  5. Cardoso, N.N.R., Alviano, C.S., Blank, A.F., Romanos, M.T.V., Fonseca, B.B., Rozental, S., Rodrigues, I.A., Alviano, D.S. 2016. Synergism effect of the essential oil from Ocimum basilicumvar. mariabonita and its major components with fluconazole and its influence on ergosterol biosynthesis. Evidence-Based Complementary and Alternative Medicine 2016: 5647182.
  6. Cho, S.H., Kim, Y.R. 2001. Antimicrobial characteristics of Scutellariae radix extract. Journal of the Korean Society of Food Science and Nutrition 30(5): 964-968.
  7. Cowan, M.M. 1999. Plant products as antimicrobial agents. Clinical Microbiology Reviews 12(4): 564-582. https://doi.org/10.1128/CMR.12.4.564
  8. Epstein, J.B. 1990. Antifungal therapy in oropharyngeal mycotic infections. Oral Surgery, Oral Medicine, Oral Pathology 69(1): 32-41. https://doi.org/10.1016/0030-4220(90)90265-T
  9. Falagas, M.E., Apostolou, K.E., Pappas, V.D. 2006. Attributable mortality of candidemia: A systematic review of matched cohort and case-control studies. European Journal of Clinical Microbiology and Infectious Diseases 25(7): 419-425. https://doi.org/10.1007/s10096-006-0159-2
  10. Garcia-Cuesta, C., Sarrion-Perez, M.G., Bagan, J.V. 2014. Current treatment of oral candidiasis: A literature review. Journal of Clinical and Experimental Dentistry 6(5): e576-e582. https://doi.org/10.4317/jced.51798
  11. Ham, Y., Kim, T.J. 2018. Plant extracts inhibiting biofilm formation by Streptococcus mutans without antibiotic activity. Journal of the Korean Wood Science and Technology 46(6): 692-702. https://doi.org/10.5658/WOOD.2018.46.6.692
  12. Ham, Y., Kim, T.J. 2019. Conditions for preparing Glycyrrhiza uralensis extract for inhibiting biofilm formation of Streptococcus mutans. Journal of the Korean Wood Science and Technology 47(2): 178-188. https://doi.org/10.5658/WOOD.2019.47.2.178
  13. Ham, Y., Kim, T.J. 2022. Inhibition of biofilm formation in Yersinia enterocolitica by edible plant extracts including Polygoni Multiflori Radix. Journal of the Korean Wood Science and Technology 50(6): 448-457. https://doi.org/10.5658/WOOD.2022.50.6.448
  14. Ham, Y., Yang, J., Choi, W.S., Ahn, B.J., Park, M.J. 2020. Antibacterial activity of essential oils from Pinaceae leaves against fish pathogens. Journal of the Korean Wood Science and Technology 48(4): 527-547. https://doi.org/10.5658/WOOD.2020.48.4.527
  15. Hedderwick, S., Kauffman, C.A. 1997. Opportunistic fungal infections: Superficial and systemic candidiasis. Geriatrics 52(10): 50-54, 59.
  16. Hidayat, A., Turjaman, M., Faulina, S.A., Ridwan, F., Aryanto, Najmulah, Irawadi, T.T., Iswanto, A.H. 2019. Antioxidant and antifungal activity of endophytic fungi associated with agarwood trees. Journal of the Korean Wood Science and Technology 47(4): 459-471. https://doi.org/10.5658/WOOD.2019.47.4.459
  17. Johnson, M.D., MacDougall, C., Ostrosky-Zeichner, L., Perfect, J.R., Rex, J.H. 2004. Combination antifungal therapy. Antimicrobial Agents and Chemotherapy 48(3): 693-715. https://doi.org/10.1128/AAC.48.3.693-715.2004
  18. Kumamoto, C.A., Vinces, M.D. 2005. Alternative Candida albicans lifestyles: Growth on surfaces. Annual Review of Microbiology 59(1): 113-133. https://doi.org/10.1146/annurev.micro.59.030804.121034
  19. Lee, J.Y., Lee, J.Y., Yun, B.S., Hwang, B.K. 2004. Antifungal activity of β-asarone from rhizomes of Acorus gramineus. Journal of Agricultural and Food Chemistry 52(4): 776-780. https://doi.org/10.1021/jf035204o
  20. Lee, S.Y., Lee, D.S., Cho, S.M., Kim, J.C., Park, M.J., Choi, I.G. 2021. Antioxidant properties of 7 domestic essential oils and identification of physiologically active components of essential oils against Candida albicans. Journal of the Korean Wood Science and Technology 49(1): 23-43. https://doi.org/10.5658/WOOD.2021.49.1.23
  21. Mukherjee, P.K., Sheehan, D.J., Hitchcock, C.A., Ghannoum, M.A. 2005. Combination treatment of invasive fungal infections. Clinical Microbiology Reviews 18(1): 163-194. https://doi.org/10.1128/CMR.18.1.163-194.2005
  22. Mun, J.S., Kim, H.C., Mun, S.P. 2021. Potential of neutral extract prepared by treating Pinus radiatabark with NaHCO3 as a dyestuff. Journal of the Korean Wood Science and Technology 49(2): 134-141. https://doi.org/10.5658/WOOD.2021.49.2.134
  23. Na, H., Kim, T.J. 2022. Synergistic antifungal activity of Phellodendri Cortex and Magnoliae Cortex against Candida albicans. Journal of the Korean Wood Science and Technology 50(1): 12-30. https://doi.org/10.5658/WOOD.2022.50.1.12
  24. Nweze, E.I., Eze, E.E. 2009. Justification for the use of Ocimum gratissimum L in herbal medicine and its interaction with disc antibiotics. BMC Complementary and Alternative Medicine 9(1): 37.
  25. Ogidi, C.O., Ojo, A.E., Ajayi-Moses, O.B., Aladejana, O.M., Thonda, O.A., Akinyele, B.J. 2021. Synergistic antifungal evaluation of over-the-counter antifungal creams with turmeric essential oil or Aloe vera gel against pathogenic fungi. BMC Complementary Medicine and Therapies 21(1): 47.
  26. Park, U.Y., Chang, D.S., Cho, H.R. 1992. Screening of antimicrobial activity for medicinal herb extracts. Journal of the Korean Society of Food Science and Nutrition 21(1): 91-96.
  27. Pfaller, M.A., Diekema, D.J., Gibbs, D.L., Newell, V.A., Bijie, H., Dzierzanowska, D., Klimko, N.N., Letscher-Bru, V., Lisalova, M., Muehlethaler, K., Rennison, C., Zaidi, M. 2009. Results from the ARTEMIS DISK global antifungal surveillance study, 1997 to 2007: 10.5-year analysis of susceptibilities of noncandidal yeast species to fluconazole and voriconazole determined by CLSI standardized disk diffusion testing. Journal of Clinical Microbiology 47(1): 117-123. https://doi.org/10.1128/JCM.01747-08
  28. Rajput, S.B., Shinde, R.B., Routh, M.M., Karuppayil, S.M. 2013. Anti-Candida properties of asaronaldehyde of Acorus gramineus rhizome and three structural isomers. Chinese Medicine 8(1): 18.
  29. Raschig, M., Ramirez-Zavala, B., Wiest, J., Saedtler, M., Gutmann, M., Holzgrabe, U., Morschhauser, J., Meinel, L. 2023. Azobenzene derivatives with activity against drug-resistant Candida albicans and Candida auris. Archiv der Pharmazie 356(2):2200463.
  30. Rios, J.L., Recio, M.C. 2005. Medicinal plants and antimicrobial activity. Journal of Ethnopharmacology 100(1-2): 80-84. https://doi.org/10.1016/j.jep.2005.04.025
  31. Rosato, A., Vitali, C., Gallo, D., Balenzano, L., Mallamaci, R. 2008. The inhibition of Candida species by selected essential oils and their synergism with amphotericin B. Phytomedicine 15(8): 635-638. https://doi.org/10.1016/j.phymed.2008.05.001
  32. Sobel, J.D. 1992. Pathogenesis and treatment of recurrent vulvovaginal candidiasis. Clinical Infectious Diseases 14(Suppl 1): S148-S153. https://doi.org/10.1093/clinids/14.Supplement_1.S148
  33. Sobel, J.D. 1997. Vaginitis. The New England Journal of Medicine 337(26): 1896-1903. https://doi.org/10.1056/NEJM199712253372607
  34. Sobel, J.D. 2007. Vulvovaginal candidosis. The Lancet 369(9577): 1961-1971. https://doi.org/10.1016/S0140-6736(07)60917-9
  35. Stover, B.H., Shulman, S.T., Bratcher, D.F., Brady, M.T., Levine, G.L., Jarvis, W.R. 2001. Nosocomial infection rates in US children's hospitals' neonatal and pediatric intensive care units. American Journal of Infection Control 29(3): 152-157. https://doi.org/10.1067/mic.2001.115407
  36. Taveira, G.B., Carvalho, A.O., Rodrigues, R., Trindade, F.G., Da Cunha, M., Gomes, V.M. 2016. Thioninlike peptide from Capsicum annuum fruits: Mechanism of action and synergism with fluconazole against Candida species. BMC Microbiology 16(1):12.
  37. Wagner, H., Ulrich-Merzenich, G. 2009. Synergy research: Approaching a new generation of phytopharmaceuticals. Phytomedicine 16(2-3): 97-110. https://doi.org/10.1016/j.phymed.2008.12.018
  38. Wisplinghoff, H., Bischoff, T., Tallent, S.M., Seifert, H., Wenzel, R.P., Edmond, M.B. 2004. Nosocomial bloodstream infections in US hospitals: Analysis of 24,179 cases from a prospective nationwide surveillance study. Clinical Infectious Diseases 39(3): 309-317. https://doi.org/10.1086/421946
  39. Xiang, M.J., Liu, J.Y., Ni, P.H., Wang, S., Shi, C., Wei, B., Ni, Y.X., Ge, H.L. 2013. Erg11 mutations associated with azole resistance in clinical isolates of Candida albicans. FEMS Yeast Research 13(4):386-393. https://doi.org/10.1111/1567-1364.12042
  40. Xiao, C.W., Ji, Q.A., Wei, Q., Liu, Y., Bao, G.L. 2015. Antifungal activity of berberine hydrochloride and palmatine hydrochloride against Microsporum canisinduced dermatitis in rabbits and underlying mechanism. BMC Complementary and Alternative Medicine 15(1): 177.
  41. Yoon, J., Kim, T.J. 2021. Synergistic antifungal activity of Magnoliae Cortex and Syzyii Flos against Candida albicans. Journal of the Korean Wood Science and Technology 49(2): 142-153. https://doi.org/10.5658/WOOD.2021.49.2.142
  42. Zhao, Y., Stensvold, C.R., Perlin, D.S., Arendrup, M.C. 2013. Azole resistance in Aspergillus fumigatus from bronchoalveolar lavage fluid samples of patients with chronic diseases. Journal of Antimicrobial Chemotherapy 68(7): 1497-1504. https://doi.org/10.1093/jac/dkt071