DOI QR코드

DOI QR Code

Performance of Six-Layered Cross Laminated Timber of Fast-Growing Species Glued with Tannin Resorcinol Formaldehyde

  • Deazy Rachmi TRISATYA (Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN)) ;
  • Adi SANTOSO (Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN)) ;
  • Abdurrachman ABDURRACHMAN (Center for Standardization of Sustainable Forest Management Instruments, Ministry of Environment and Forestry) ;
  • Dina Alva PRASTIWI (Cilegon College of Analytical Chemistry)
  • Received : 2022.03.17
  • Accepted : 2023.01.08
  • Published : 2023.03.25

Abstract

The aim of this study were to evaluate tannin resorcinol formaldehyde (TRF) for the preparation of cross-laminated timbers (CLTs) made from fast-growing tree species and to analyze the physical and mechanical properties of CLTs. TRF copolymer resin was prepared by using the bark extracts of Swietenia mahagoni (L.) Jacq. It was observed that the TRF adhesive possessed less solid content (23.59%), high viscosity (11.35 poise), and high pH values (10.0) compared to the standard phenol resorcinol formaldehyde. The TRF adhesive was applied to produce CLTs with the addition of 15% tapioca and flour as an extender. The six-layered CLTs were produced from sengon (Falcataria moluccana Miq.), jabon [Anthocephalus cadamba (Roxb) Miq.], coconut (Cocos nucifera L.), and the combination of coconut-jabon and coconut-sengon wood. The analysis of variance revealed that the layer composition of CLT significantly affected the physical and mechanical properties of the beam. While the modulus of rupture met the standard, the moisture content and modulus of elasticity values did not fulfill JAS 1152-2007. All of the CLTs produced in this study demonstrated low formaldehyde emission, ranging from 0.001 mg/L to 0.003 mg/L, thereby satisfying the JAS 1152 for structural glue laminated timber.

Keywords

Acknowledgement

We would like to thank the Center for Standardization of Sustainable Forest Management Instruments, and the Ministry of Environment and Forestry for funding and facilitating this research. We dedicate this work to the late Abdurrachman.

References

  1. Abdulah, L., Suhendang, E., Purnomo, H., Matangaran, J.R. 2020. Measuring the sustainability of wood consumption at the household level in Indonesia: A case study in Bogor, Indonesia. Biodiversitas 21(2): 457-464. https://doi.org/10.13057/biodiv/d210205
  2. Abdurachman, Santoso, A., Pari, R. 2021. Determination and application of bio-adhesive extracted from mahogany bark on laminated jabon (Anthocephalus cadamba). Jurnal Penelitian Hasil Hutan 39(2): 99-105. https://doi.org/10.20886/jphh.2021.39.2.99-105
  3. Akzonobel. 2017. PRF System 1711 with Hardener 2734. Akzonobel Adhesives. Akzonobel, Surabaya, Indonesia.
  4. American Society for Testing Materials [ASTM]. 2000. Standard Test Methods for Small Clear Specimens of Timber. ASTM D143-94. ASTM International, West Conshohocken, PA, USA.
  5. Apriliana, F. 2012. Effect of thickness and lamina angle orientation on the properties of cross-laminated wood made of sengon wood (Paraserianthes falcataria L. Nielsen). M.S. Thesis, Institut Pertanian Bogor, Indonesia.
  6. Auliarta, S., Sribudiani, E., Somadona, S. 2021. Resorcinol formaldehyde tannin's adhesive properties and adherence to acacia sirekat (Acacia mangium) and pulai (Alstonia scholaris). Perennial 17(2): 35-44.
  7. Badan Standardisasi Nasional [BSN]. 1998. Liquid Phenol Formaldehyde for Wood Adhesive. SNI 06-4567-1998. BSN, Jakarta, Indonesia.
  8. Badan Standardisasi Nasional [BSN]. 2000. Laminated Veneer. SNI 01-6240-2000. BSN, Jakarta, Indonesia.
  9. Bal, B.C., Bektas, I. 2012. The effects of wood species, load direction, and adhesives on bending properties of laminated veneer lumber. BioResources 7(3): 3104-3112. https://doi.org/10.15376/biores.7.3.3104-3112
  10. Barreto, M.I.M., De Araujo, V., Cortez-Barbosa, J., Christoforo, A.L., Moura, J.D.M. 2019. Structural performance analysis of cross-laminated timberbamboo (CLTB). BioResources 14(3): 5045-5058. https://doi.org/10.15376/biores.14.3.5045-5058
  11. Bharudin, M.A., Zakaria, S., Chia, C.H. 2013. Condensed tannins from Acacia mangium bark: Characterization by spot tests and FTIR. In: Murad, A.M.J.H., Yen, C.C., Ismail, E.S., Maskat, M.Y., Noorani, M.S.M., Ibrahim, N., Karim, N.H.A., Yahya, R., Khalid, R.M., Ismail, W.R., Ling, W.S., Ibrahim, Z., (eds), Selangor, Malaysia, Proceedings of 2013 UKM FST Postgraduate Colloquium, pp. 153-157.
  12. Brandner, R. 2013. Production and Technology of Cross Laminated Timber (CLT): A State-of-the-art Report. University of Bath, Bath, UK. pp. 3-36.
  13. Chen, M., Ye, L., Li, H., Wang, G., Chen, Q., Fang, C., Dai, C., Fei, B. 2020. Flexural strength and ductility of moso bamboo. Construction and Building Materials 246: 118418.
  14. Choi, C., Kojima, E., Kim, K.J., Yamasaki, M., Sasaki, Y., Kang, S.G. 2018. Analysis of mechanical properties of cross-laminated timber (CLT) with plywood using Korean larch. BioResources 13(2): 2715-2726. https://doi.org/10.15376/biores.13.2.2715-2726
  15. Choi, G.W., Yang, S.M., Lee, H.J., Kim, J.H., Choi, K.H., Kang, S.G. 2021. Evaluation of flexural performance according to the plywood bonding method of ply-lam CLT. Journal of the Korean Wood Science and Technology 49(2): 107-121. https://doi.org/10.5658/WOOD.2021.49.2.107
  16. D'Amico, B., Pomponi, F., Hart, J. 2021. Global potential for material substitution in building construction: The case of cross laminated timber. Journal of Cleaner Production 279: 123487.
  17. Dunky, M. 2021. Wood Adhesives Based on Natural Resources: A Critical Review Part III. Tanninand Lignin-Based Adhesives. In: Progress in Adhesion and Adhesives, Ed. by Mittal, K.L. Scrivener, Beverly, MA, USA.
  18. Feng, T.Y., Chiang, L.K. 2020. Effects of densification on low-density plantation species for cross-laminated timber. In: Ahmad, R., Hoong, W.Y., Rozali, S., (eds), Kuala Lumpur, Malaysia, Proceedings of 4th International Conference on the Science and Engineering of Materials, p. 020001.
  19. Frese, M., Enders-Comberg, M., Blass, H.J., Glos, P. 2012. Compressive strength of spruce glulam. European Journal of Wood and Wood Products 70(6): 801-809. https://doi.org/10.1007/s00107-012-0623-x
  20. Fridiyanti, I., Massijaya, M.Y. 2018. Physical and mechanical properties of parallel strand lumber made from hot pre-pressed long strand oil palm trunk waste. Institute of Physics Conference Series: Earth and Environmental Science 141(1): 012007.
  21. Frihart, C.R. 2009. Adhesive groups and how they relate to the durability of bonded wood. Journal of Adhesion Science and Technology 23(4): 601-617. https://doi.org/10.1163/156856108X379137
  22. Frihart, C.R., Hunt, C.G. 2010. Adhesives with Wood Materials: Bond Formation and Performance. In: Wood Handbook: Wood as an Engineering Material, Ed. by Ross, R. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI, USA.
  23. Fujimoto, Y., Tanaka, H., Morita, H., Kang, S.G. 2021. Development of ply-lam composed of Japanese cypress laminae and Korean larch plywood. Journal of the Korean Wood Science and Technology 49(1): 57-66. https://doi.org/10.5658/WOOD.2021.49.1.57
  24. Galih, N.M., Yang, S.M., Yu, S.M., Kang, S.G. 2020. Study on the mechanical properties of tropical hybrid cross laminated timber using bamboo laminated board as core layer. Journal of the Korean Wood Science and Technology 48(2): 245-252. https://doi.org/10.5658/WOOD.2020.48.2.245
  25. Gulzow, A., Richter, K., Steiger, R. 2011. Influence of wood moisture content on bending and shear stiffness of cross laminated timber panels. European Journal of Wood and Wood Products 69(2): 193-197. https://doi.org/10.1007/s00107-010-0416-z
  26. Hansel, A., Sandak, J., Sandak, A., Mai, J., Niemz, P. 2022. Selected previous findings on the factors influencing the gluing quality of solid wood products in timber construction and possible developments: A review. Wood Material Science & Engineering 17(3): 230-241. https://doi.org/10.1080/17480272.2021.1925963
  27. Harsono, D. 2015. Sifat fisis dan mekanis batang kelapa (Cocos nucifera L.) dengan proses pemadatan. Jurnal Riset Industri Hasil Hutan 7(2): 39-48. https://doi.org/10.24111/jrihh.v7i2.1230
  28. Haygreen, J.G., Bowyer, J.L. 1993. Forest Products and Wood Science: An Introduction. Gadjah Mada University Press, Yogyakarta, Indonesia.
  29. Hendrik, J., Hadi, Y.S., Massijaya, M.Y., Santoso, A., Pizzi, A. 2019. Properties of glued laminated timber made from fast-growing species with mangium tannin and phenol resorcinol formaldehyde adhesives. Journal of the Korean Wood Science and Technology 47(3): 253-264. https://doi.org/10.5658/WOOD.2019.47.3.253
  30. Hernawati, A., Sutoyo, S. 2018. Characteristics of adhesive firmness of tannin resorcinol formaldehyde from johar sawdust extract as adhesive on lamina wood. In: Rusmini, Sukarmin, Novita, D., Wibawa, S.C., Savana, R.T., Hidayatulloh, T., Allamin, S., (eds), Surabaya, Indonesia, Proceedings of the Seminar Nasional Kimia: National Seminar on Chemistry (SNK 2018), pp. 111-115.
  31. Hindman, D.P., Bouldin, J.C. 2015. Mechanical properties of southern pine cross-laminated timber. Journal of Materials in Civil Engineering 27(9): 04014251.
  32. Hoong, Y.B., Paridah, M.T., Loh, Y.F., Koh, M.P., Luqman, C.A., Zaidon, A. 2012. Acacia mangium tannin as formaldehyde scavenger for low molecular weight phenol-formaldehyde resin in bonding tropical plywood. Journal of Adhesion Science and Technology 24(8-10): 1653-1664. https://doi.org/10.1163/016942410X507740
  33. Jahanshaei, S., Tabarsa, T., Asghari, J. 2012. Eco-friendly tannin-phenol formaldehyde resin for producing wood composites. Pigment & Resin Technology 41(5): 296-301. https://doi.org/10.1108/03699421211264857
  34. Japan Agricultural Standard [JAS]. 2003. Glued Laminated Timber. JAS 234. Ministry of Agriculture, Forestry and Fisheries, Tokyo, Japan.
  35. Japan Agricultural Standard [JAS]. 2007. Glued Laminated Timber. JAS 1152. Ministry of Agriculture, Forestry and Fisheries, Tokyo, Japan.
  36. Kamke, F.A., Lee, J.N. 2007. Adhesive penetration in wood: A review. Wood and Fiber Science 39(2): 205-220.
  37. Karacabeyli, E., Douglas, B. 2013. CLT Handbook: Cross Laminated Timber. FPInnovations and Binational Softwood Lumber Council, Pointe-Claire, QC, Canada.
  38. Karliati, T., Febrianto, F., Syafii, W., Wahyudi, I., Jaya Wistara, I.N. 2014. Gutta-Percha-based adhesive for laminated wood production. BioResources 9(3): 5034-5044. https://doi.org/10.15376/biores.9.3.5034-5044
  39. Knorz, M., Torno, S., van de Kuilen, J.W. 2017. Bonding quality of industrially produced cross-laminated timber (CLT) as determined in delamination tests. Construction and Building Materials 133: 219-225. https://doi.org/10.1016/j.conbuildmat.2016.12.057
  40. Kurt, R. 2010. Suitability of three hybrid poplar clones for laminated veneer lumber manufacturing using melamine urea formaldehyde adhesive. BioResources 5(3): 1868-1878. https://doi.org/10.15376/biores.5.3.1868-1878
  41. Lestari, A.S.R.D, Hadi, Y.S., Hermawan, D., Santoso, A. 2015. Glulam properties of fast-growing species using mahogany tannin adhesive. BioResources 10(4): 7419-7433. https://doi.org/10.15376/biores.10.4.7419-7433
  42. Lestari, A.S.R.D, Hadi, Y.S., Hermawan, D., Santoso, A., Pizzi, A. 2019. Physical and mechanical properties of glued-laminated lumber from fast-growing tree species using mahogany tannin adhesive. Wood and Fiber Science 51(2): 1-12. https://doi.org/10.22382/wfs-2019-001
  43. Liew, K.C., Maining, E.S. 2021. Mechanical and physical properties of cross-laminated timber made from batai using different glue spread amounts. Journal of Physics: Conference Series 2129(1): 012087.
  44. Lorenz, L., Frihart, C.R., Wescott, J.M. 2007. Chromatographic analysis of the reaction of soy flour with formaldehyde and phenol for wood adhesives. Journal of the American Oil Chemists' Society 84(8): 769-776. https://doi.org/10.1007/s11746-007-1097-6
  45. Martawijaya, A., Kartasujana, I., Kadir, K., Prawira, S. A. 2005. The Indonesian Wood Encyclopedia. Badan Penelitian dan Pengembangan Kehutanan, Departemen Kehutanan, Bogor, Indonesia.
  46. Ministry of Environment and Forestry [MOEF]. 2020. The 2019 Statitistics. Ministry of Environment and Forestry, Jakarta, Indonesia.
  47. Ministry of Environment and Forestry [MOEF]. 2021. The 2020 Statitistics. Ministry of Environment and Forestry, Jakarta, Indonesia.
  48. Ministry of Public Works and Housing [MOPWH]. 2022. Reducing the adequate housing backlog, the Ministry of PUPR prepares a grand design for the informal MBR segment housing. https://pu.go.id/berita/kurangi-backlog-hunian-layak-kementerian-pupr-siapkan-grand-design-perumahan-segmen-mbr-informal
  49. Mohamada, S.F., Zakaria, S., Pizzi, A. 2010. Characterization of tannin-based adhesives from Acacia mangium barks. In: Bangi, Malaysia, Proceedings of RnD Seminar 2010: Research and Development Seminar 2010.
  50. Muthmainnah. 2014. Analysis of the physical and mechanical properties of cross laminated timber from three types of community wood. M.S. Thesis, Institut Pertanian Bogor, Indonesia.
  51. Okuda, S., Corpataux, L., Muthukrishnan, S., Wei, K.H. 2018. Cross-laminated timber with renewable, fastgrowing tropical species in Southeast Asia. In: Seoul, Korea, Proceedings of 2018 World Conference on Timber Engineering.
  52. Pari, R., Santoso, A. 2019. Bond strength and formaldehyde emission of rattan lamina board using formaldehyde tannin adhesive. Jurnal Penelitian Hasil Hutan 37(1): 33-41.
  53. Permatasari, P.C. 2014. Characteristics of cross laminated timber from sengon (Falcataria moluccana (Miq.) Barneby & J.W. Grimes) and mindi (Melia azedarach L) wood using isocyanate adhesive. Undergraduate Thesis, Institut Pertanian Bogor, Indonesia.
  54. Pizzi, A. 2003. Natural Phenolic Adhesives I: Tannins. In: Handbook of Adhesive Technology, Ed. by Pizzi, A. and Mittal, K.L. Marcel Dekker, New York, NY, USA.
  55. Pizzi, A. 2018. Natural Phenolic Adhesives Derived from Tannins and Lignin. In: Handbook of Adhesive Technology, Ed. by Pizzi, A. and Mittal, K.L. CRC Press, Boca Raton, FL, USA.
  56. Prabuningrum, D.S., Massijaya, M.Y., Hadi, Y.S., Abdillah, I.B. 2020. Physical-mechanical properties of laminated board made from oil palm trunk (Elaeis guineensis Jacq.) waste with various lamina compositions and densification. Journal of the Korean Wood Science and Technology 48(2): 196-205. https://doi.org/10.5658/WOOD.2020.48.2.196
  57. Rachmawati, O., Sugita, P., Santoso, A. 2018. Synthesis of resorcinol formaldehyde tannin adhesive from mangium tree bark extract to improve the quality of palm trunks. Jurnal Penelitian Hasil Hutan 36(1): 33-46. https://doi.org/10.20886/jphh.2018.36.1.33-46
  58. Ramires, E.C., Frollini, E. 2012. Tannin-phenolic resins: Synthesis, characterization, and application as matrix in biobased composites reinforced with sisal fibers. Composites Part B: Engineering 43(7): 2851-2860. https://doi.org/10.1016/j.compositesb.2012.04.049
  59. Richardson, P.M. 1990. Phytochemical methods: A guide to modern techniques of plant analysis. Brittonia 42:115.
  60. Ruhendi, S., Koroh, D.N., Syamani, F.A., Yanti, H., Nurhaida, Saad, S., Sucipto, T. 2007. Analysis of Wood Adhesion. IPB Press, Bogor, Indonesia.
  61. Santoso, A. 1995. Effect of veneer thickness and glue spread on the damar plywood bonding strength. Jurnal Penelitian Hasil Hutan 13(7): 266-274. https://doi.org/10.20886/jphh.1995.13.7.266-274
  62. Santoso, A. 2001. Experiment of Tannin Adhesive Production: A Report. Departemen Kehutanan, Bogor, Indonesia.
  63. Santoso, A., Abdurachman, A. 2016. Mahogany bark extract's properties as a wood adhesive. Jurnal Penelitian Hasil Hutan 34(4): 269-284. https://doi.org/10.20886/jphh.2016.34.4.269-284
  64. Santoso, A., Hadi, Y.S., Malik, J. 2012. Tannin resorcinol formaldehyde as potential glue for the manufacture of plybamboo. Indonesian Journal of Forestry Research 9(1): 10-15. https://doi.org/10.20886/ijfr.2012.9.1.10-15
  65. Santoso, A., Hadi, Y.S., Malik, J. 2014. Composite flooring quality of combined wood species using adhesive from merbau wood extract. Forest Products Journal 64(5-6): 179-186. https://doi.org/10.13073/FPJ-D-13-00051
  66. Santoso, A., Pari, G. 2015. Properties of the low emission formaldehyde recycled particleboards. Jurnal Penelitian Hasil Hutan 33(1): 1-10. https://doi.org/10.20886/jphh.2015.33.1.1-10
  67. Santoso, A., Pari, G., Jasni, J. 2015. The quality of laminated board bonded with tannin merbau resorcinol. Jurnal Penelitian Hasil Hutan 33(3): 253-260. https://doi.org/10.20886/jphh.2015.33.3.253-260
  68. Santoso, A., Sulastiningsih, I.M., Pari, G., Jasni. 2016. Utilization of merbau wood extract to bind laminated bamboo products. Jurnal Penelitian Hasil Hutan 34(2): 89-100. https://doi.org/10.20886/jphh.2016.34.2.89-100
  69. Shang, X., Marques, E.A.S., Machado, J.J.M., Carbas, R.J.C., Jiang, D., da Silva, L.F.M. 2019. Review on techniques to improve the strength of adhesive joints with composite adherends. Composites Part B: Engineering 177: 107363.
  70. Shmulsky, R., Jones, P.D. 2011. Forest Products and Wood Science: An Introduction. John Wiley & Sons, Hoboken, NJ, USA.
  71. Song, D., Kim, K. 2022. Influence of manufacturing environment on delamination of mixed cross laminated timber using polyurethane adhesive. Journal of the Korean Wood Science and Technology 50(3):167-178. https://doi.org/10.5658/WOOD.2022.50.3.167
  72. Song, Y.J., Hong, S.I. 2016. Evaluation of bonding strength of larch cross-laminated timber. Journal of the Korean Wood Science and Technology 44(4):607-615. https://doi.org/10.5658/WOOD.2016.44.4.607
  73. Sowunmi, S., Ebewele, R.O., Conner, A.H., River, B.H. 1996. Fortified mangrove tannin-based plywood adhesive. Journal of Applied Polymer Science 62(3):577-584. https://doi.org/10.1002/(SICI)1097-4628(19961017)62:3<577::AID-APP15>3.0.CO;2-W
  74. Supartini. 2012. Characterization of cross laminated timber from fast growing wood with different number of layers. M.S. Thesis, Institut Pertanian Bogor, Indonesia.
  75. Tsoumis, G. 1991. Science and Technology of Wood: Structure, Properties, Utilization. Van Nostrand Reinhold, New York, NY, USA.
  76. Yang, S.M., Lee, H.H., Kang, S.G. 2021. Research trends in hybrid cross-laminated timber (CLT) to enhance the rolling shear strength of CLT. Journal of the Korean Wood Science and Technology 49(4):336-359. https://doi.org/10.5658/WOOD.2021.49.4.336
  77. Yauk, M., Stenson, J., Donor, M., Wymelenberg, K.V.D. 2020. Evaluating volatile organic compound emissions from cross-laminated timber bonded with a soy-based adhesive. Buildings 10(11): 191.
  78. Yusoh, A.S., Md Tahir, P., Anwar Uyup, M.K., Lee, S.H., Husain, H., Khaidzir, M.O. 2021. Effect of wood species, clamping pressure and glue spread rate on the bonding properties of cross-laminated timber (CLT) manufactured from tropical hardwoods. Construction and Building Materials 273: 121721.
  79. Zhang, J., Song, F., Tao, J., Zhang, Z., Shi, S.Q. 2018. Research progress on formaldehyde emission of wood-based panel. International Journal of Polymer Science 2018: 9349721.
  80. Zhang, Y., Wang, X.M., Casilla, R., Cooper, P., Huang, Z., Wang, X. 2010. Impact of curing condition on pH and alkalinity/acidity of structural wood adhesives. Journal of Applied Polymer Science 117: 2888-2898. https://doi.org/10.1002/app.32201
  81. Zhou, J., Yue, K., Lu, W., Chen, Z., Cheng, X., Liu, W., Jia, C., Tang, L. 2017. Bonding performance of melamine-urea-formaldehyde and phenol-resorcinolformaldehyde adhesives in interior grade glulam. Journal of Adhesion Science and Technology 31(23): 2630-2639. https://doi.org/10.1080/01694243.2017.1313185
  82. Zhou, X., Pizzi, A. 2013. Tannin-resorcinol-aldehyde cold-set wood adhesives with only formaldehyde as hardener. European Journal of Wood and Wood Products 71(4): 537-538. https://doi.org/10.1007/s00107-013-0701-8