DOI QR코드

DOI QR Code

Thermo-mechanical properties in bending of a multizone nickel-titanium archwire: A retrieval analysis

  • Panagiotis Roulias (Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens) ;
  • Ioulia-Maria Mylonopoulou (Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens) ;
  • Iosif Sifakakis (Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens) ;
  • Christoph Bourauel (Department of Oral Technology, School of Dentistry, University Hospital Bonn) ;
  • Theodore Eliades (Clinic of Orthodontics and Paediatric Dentistry, Center of Dental Medicine, University of Zurich)
  • Received : 2022.08.18
  • Accepted : 2022.11.16
  • Published : 2023.03.25

Abstract

Objective: This study aimed to compare the mechanical and thermal properties in the anterior and posterior segments of new and retrieved specimens of a commercially available multizone superelastic nickel-titanium (NiTi) archwire. Methods: The following groups of 0.016 × 0.022-inch Bioforce NiTi archwires were compared: a) anterior and b) posterior segments of new specimens and c) anterior and d) posterior segments of retrieved specimens. Six specimens were evaluated in each group, by three-point bending and bend and free recovery tests. Bending moduli (Eb) were calculated. Furthermore, the new specimens were evaluated with scanning electron microscopy/energy-dispersive X-ray spectrometry. A multiple linear regression model with a random intercept at the wire level was applied for data analysis. Results: The forces in the posterior segments or new specimens were higher than those recorded in the anterior segments or retrieved specimens, respectively. Accordingly, Eb also varied. Higher austenite start and austenite finish (Af) temperatures were recorded in the anterior segments. No statistically significant differences were found for these temperatures between retrieved and new wires. The mean elemental composition was (weight percentage): Ni, 52.6 ± 0.5; Ti, 47.4 ± 0.5. Conclusions: The existence of multiple force zones was confirmed in new and retrieved Bioforce archwires. The retrieved archwires demonstrated lower forces during the initial stages of deactivation in three-point bending tests, compared with new specimens. The Af temperature of these archwires may lie higher than the regular intraoral temperature. Even at 2 mm deflections, the forces recorded from these archwires may lie beyond biologically safe limits.

Keywords

Acknowledgement

We are grateful to Professor Spyros Zinelis (Department of Biomaterials, School of Dentistry, National and Kapodistrian University of Athens, Greece) for providing the equipment for the SEM/EDS analysis and for support and guidance while drafting this article. We thank Bitsaropoulos (Athens, Greece) for supplying the Bioforce archwires.

References

  1. Miura F, Mogi M, Ohura Y, Hamanaka H. The superelastic property of the Japanese NiTi alloy wire for use in orthodontics. Am J Orthod Dentofacial Orthop 1986;90:1-10.  https://doi.org/10.1016/0889-5406(86)90021-1
  2. Bradley TG, Brantley WA, Culbertson BM. Differential scanning calorimetry (DSC) analyses of superelastic and nonsuperelastic nickel-titanium orthodontic wires. Am J Orthod Dentofacial Orthop 1996;109:589-97.  https://doi.org/10.1016/S0889-5406(96)70070-7
  3. Aghili H, Yasssaei S, Ahmadabadi MN, Joshan N. Load deflection characteristics of nickel titanium initial archwires. J Dent (Tehran) 2015;12:695-704. 
  4. Khier SE, Brantley WA, Fournelle RA. Bending properties of superelastic and nonsuperelastic nickel-titanium orthodontic wires. Am J Orthod Dentofacial Orthop 1991;99:310-8.  https://doi.org/10.1016/0889-5406(91)70013-M
  5. Andreasen G, Wass K, Chan KC. A review of superelastic and thermodynamic nitinol wire. Quintessence Int 1985;16:623-6. 
  6. Kusy RP. A review of contemporary archwires: their properties and characteristics. Angle Orthod 1997;67:197-207. 
  7. Kusy RP, Whitley JQ. Thermal and mechanical characteristics of stainless steel, titanium-molybdenum, and nickel-titanium archwires. Am J Orthod Dentofacial Orthop 2007;131:229-37.  https://doi.org/10.1016/j.ajodo.2005.05.054
  8. Barwart O, Rollinger JM, Burger A. An evaluation of the transition temperature range of super-elastic orthodontic NiTi springs using differential scanning calorimetry. Eur J Orthod 1999;21:497-502.  https://doi.org/10.1093/ejo/21.5.497
  9. Brantley WA, Eliades T. Orthodontic materials: scientific and clinical aspects. Stuttgart: Goerge Thieme Verlag; 2001. 
  10. Duerig TW Melton K, Stockel D, Wayman C. Engineering aspects of shape memory alloys. London: Butterworth-Heinemann; 1990. p. 13-20. 
  11. Meling TR, Odegaard J. The effect of short-term temperature changes on superelastic nickel-titanium archwires activated in orthodontic bending. Am J Orthod Dentofacial Orthop 2001;119:263-73.  https://doi.org/10.1067/mod.2001.112451
  12. Bartzela TN, Senn C, Wichelhaus A. Load-deflection characteristics of superelastic nickel-titanium wires. Angle Orthod 2007;77:991-8.  https://doi.org/10.2319/101206-423.1
  13. Lombardo L, Toni G, Stefanoni F, Mollica F, Guarneri MP, Siciliani G. The effect of temperature on the mechanical behavior of nickel-titanium orthodontic initial archwires. Angle Orthod 2013;83:298-305.  https://doi.org/10.2319/040612-287.1
  14. Nakano H, Satoh K, Norris R, Jin T, Kamegai T, Ishikawa F, et al. Mechanical properties of several nickel-titanium alloy wires in three-point bending tests. Am J Orthod Dentofacial Orthop 1999;115:390-5.  https://doi.org/10.1016/S0889-5406(99)70257-X
  15. Sakima MT, Dalstra M, Melsen B. How does temperature influence the properties of rectangular nickeltitanium wires? Eur J Orthod 2006;28:282-91.  https://doi.org/10.1093/ejo/cji079
  16. Mirabella AD, Artun J. Risk factors for apical root resorption of maxillary anterior teeth in adult orthodontic patients. Am J Orthod Dentofacial Orthop 1995;108:48-55.  https://doi.org/10.1016/S0889-5406(95)70065-X
  17. Cannon JL. Dual-flex archwires. J Clin Orthod 1984;18:648-9. 
  18. Thompson WJ. Combination anchorage technique: an update of current mechanics. Am J Orthod Dentofacial Orthop 1988;93:363-79.  https://doi.org/10.1016/0889-5406(88)90095-9
  19. Sanders E, Johannessen L, Nadal J, Jager A, Bourauel C. Comparison of multiforce nickel-titanium wires to multistrand wires without force zones in bending and torque measurements. J Orofac Orthop 2022;83:382-94.  https://doi.org/10.1007/s00056-021-00321-2
  20. Lombardo L, Ceci M, Mollica F, Mazzanti V, Palone M, Siciliani G. Mechanical properties of multi-force vs. conventional NiTi archwires. J Orofac Orthop 2019;80:57-67.  https://doi.org/10.1007/s00056-018-00164-4
  21. ASTM International. ASTM F2082/F2082M-16. Standard test method for determination of transformation temperature of nickel-titanium shape memory alloys by bend and free recovery. West Conshohocken: ASTM; 2016. 
  22. ASTM International. ASTM F2004-17. Standard test method for transformation temperature of nickel-titanium alloys by thermal analysis. West Conshohocken: ASTM; 2017. 
  23. Nespoli A, Villa E, Passaretti F, Albertini F, Cabassi R, Pasquale M, et al. Non-conventional techniques for the study of phase transitions in NiTi-based alloys. J Mater Eng Perform 2014;23:2491-7.  https://doi.org/10.1007/s11665-014-1105-6
  24. Silness J, Loe H. Periodontal disease in pregnancy. II. Correlation between oral hygiene and periodontal condtion. Acta Odontol Scand 1964;22:121-35.  https://doi.org/10.3109/00016356408993968
  25. Bourauel C, Drescher D, Thier M. An experimental apparatus for the simulation of three-dimensional movements in orthodontics. J Biomed Eng 1992;14:371-8.  https://doi.org/10.1016/0141-5425(92)90081-U
  26. DIN Dentistry. Wires for use in orthodontics (ISO 15841:2014/Amd 1:2020). German version. Newark: iTeh, Inc.; 2020. 
  27. ASTM International. ASTM F2082-06. Standard test method for determination of transformation temperature of nickel-titanium shape memory alloys by bend and free recovery. West Conshohocken: ASTM; 2016. 
  28. Sifakakis I, Eliades T. Laboratory evaluation of orthodontic biomechanics: the clinical applications revisited. Semin Orthod 2017;23:382-9.  https://doi.org/10.1053/j.sodo.2017.07.008
  29. Krishnan V, Kumar KJ. Mechanical properties and surface characteristics of three archwire alloys. Angle Orthod 2004;74:825-31. 
  30. Pelton AR, Gong XY, Duerig T. Fatigue testing of diamond-shaped specimens. Paper presented at: International Conference on Shape Memory and Superelastic Technologies, SMST-2003; 2003 May 5-8; Pacific Grove, USA. Menlo Park: SMST Society, Inc., 2004. 
  31. Theodorou CI, Kuijpers-Jagtman AM, Bronkhorst EM, Wagener FADTG. Optimal force magnitude for bodily orthodontic tooth movement with fixed appliances: a systematic review. Am J Orthod Dentofacial Orthop 2019;156:582-92.  https://doi.org/10.1016/j.ajodo.2019.05.011
  32. Proffit W. The biologic basis of orthodontic therapy. In: Proffit W, Fields H, Larson B, Sarver D, eds. Contemporary orthodontics. 6th ed. St. Louis: Elsevier Mosby; 2018. p. 278. 
  33. Sifakakis I, Pandis N, Makou M, Eliades T, Bourauel C. A comparative assessment of the forces and moments generated at the maxillary incisors between conventional and self-ligating brackets using a reverse curve of Spee NiTi archwire. Aust Orthod J 2010;26:127-33.  https://doi.org/10.2478/aoj-2010-0021
  34. Ibe DM, Segner D. Superelastic materials displaying different force levels within one archwire. J Orofac Orthop 1998;59:29-38.  https://doi.org/10.1007/BF01321553
  35. Elayyan F, Silikas N, Bearn D. Ex vivo surface and mechanical properties of coated orthodontic archwires. Eur J Orthod 2008;30:661-7.  https://doi.org/10.1093/ejo/cjn057
  36. Bradley TG, Maslowski MJ, Toth JM, Monaghan P. Reduction of mechanical properties of NiTi wires due to clinical use. J Dent Res 2003;82(special issue A):Abstract 1538. 
  37. Obaisi NA, Galang-Boquiren MT, Evans CA, Tsay TG, Viana G, Berzins D, et al. Comparison of the transformation temperatures of heat-activated Nickel-Titanium orthodontic archwires by two different techniques. Dent Mater 2016;32:879-88.  https://doi.org/10.1016/j.dental.2016.03.017
  38. Mehta ASK. Thermomechanical characterization of variable force NiTi orthodontic archwires [Master's Theses]. Milwaukee: Marquette University; 2015. 
  39. Chen JT, Duerig TW, Pelton AR, Stockel D. An apparatus to measure the shape memory properties of Nitinol tubes for medical applications. J Phys IV 1995;5(C8):1247-52.  https://doi.org/10.1051/jp4/1995581247
  40. Butler J, Tiernan P, Tofail SAM, Gandhi A. Probing martensitic transition in Nitinol wire: a comparison of X-ray diffraction and other techniques. Paper presented at: International Conference on Advances in Materials and Processing Technologies. AIP Conference Proceedings; 2010 Jul 21-22; Portland, USA. Melville: American Institute of Physics, 2010. 
  41. Norwich DW. A Study of the properties of a high temperature binary Nitinol alloy above and below its martensite to austenite transformation temperature. Bethel: SAES Memry Corporation; 2010. 
  42. Pelton AR, Dicello J, Miyazaki S. Optimisation of processing and properties of medical grade Nitinol wire. Minim Invasive Ther Allied Technol 2000;9:107-18.  https://doi.org/10.3109/13645700009063057
  43. Longman CM, Pearson GJ. Variations in tooth surface temperature in the oral cavity during fluid intake. Biomaterials 1987;8:411-4.  https://doi.org/10.1016/0142-9612(87)90016-0
  44. Otsuka K. Introduction to the R-phase transition. In: Duerig TW, Melton KN, Stockel D, Wayman CM, eds. Engineering aspects of shape memory alloys. London: Butterworth-Heinemann Ltd.; 1990. p. 36-45. 
  45. Biermann MC, Berzins DW, Bradley TG. Thermal analysis of as-received and clinically retrieved copper-nickel-titanium orthodontic archwires. Angle Orthod 2007;77:499-503.  https://doi.org/10.2319/0003-3219(2007)077[0499:TAOAAC]2.0.CO;2
  46. Amini F, Rakhshan V, Pousti M, Rahimi H, Shariati M, Aghamohamadi B. Variations in surface roughness of seven orthodontic archwires: an SEM-profilometry study. Korean J Orthod 2012;42:129-37.  https://doi.org/10.4041/kjod.2012.42.3.129
  47. Usui T, Iwata T, Miyake S, Otsuka T, Koizumi S, Shirakawa N, et al. Mechanical and frictional properties of aesthetic orthodontic wires obtained by hard chrome carbide plating. J Dent Sci 2018;13:151-9.  https://doi.org/10.1016/j.jds.2017.07.003
  48. Pelsue BM, Zinelis S, Bradley TG, Berzins DW, Eliades T, Eliades G. Structure, composition, and mechanical properties of Australian orthodontic wires. Angle Orthod 2009;79:97-101.  https://doi.org/10.2319/022408-110.1
  49. Brantley W. Orthodontic wires. In: Brantley W, Eliades T, eds. Orthodontic materials. Stuttgart: Thieme; 2001. p. 78-100. 
  50. Thompson SA. An overview of nickel-titanium alloys used in dentistry. Int Endod J 2000;33:297-310.  https://doi.org/10.1046/j.1365-2591.2000.00339.x
  51. Kusy RP, Whitley JQ, Prewitt MJ. Comparison of the frictional coefficients for selected archwire-bracket slot combinations in the dry and wet states. Angle Orthod 1991;61:293-302. Erratum in: Angle Orthod 1993;63:164.