DOI QR코드

DOI QR Code

Integration of Single-Cell RNA-Seq Datasets: A Review of Computational Methods

  • Yeonjae Ryu (School of Biological Sciences, Seoul National University) ;
  • Geun Hee Han (School of Biological Sciences, Seoul National University) ;
  • Eunsoo Jung (School of Biological Sciences, Seoul National University) ;
  • Daehee Hwang (School of Biological Sciences, Seoul National University)
  • 투고 : 2023.01.10
  • 심사 : 2023.01.19
  • 발행 : 2023.02.28

초록

With the increased number of single-cell RNA sequencing (scRNA-seq) datasets in public repositories, integrative analysis of multiple scRNA-seq datasets has become commonplace. Batch effects among different datasets are inevitable because of differences in cell isolation and handling protocols, library preparation technology, and sequencing platforms. To remove these batch effects for effective integration of multiple scRNA-seq datasets, a number of methodologies have been developed based on diverse concepts and approaches. These methods have proven useful for examining whether cellular features, such as cell subpopulations and marker genes, identified from a certain dataset, are consistently present, or whether their condition-dependent variations, such as increases in cell subpopulations in particular disease-related conditions, are consistently observed in different datasets generated under similar or distinct conditions. In this review, we summarize the concepts and approaches of the integration methods and their pros and cons as has been reported in previous literature.

키워드

과제정보

This study was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF), funded by the Korean government (MSIT) (No. 2019M3A9B6066967).

참고문헌

  1. Amodio, M., van Dijk, D., Srinivasan, K., Chen, W.S., Mohsen, H., Moon, K.R., Campbell, A., Zhao, Y., Wang, X., Venkataswamy, M., et al. (2019). Exploring single-cell data with deep multitasking neural networks. Nat. Methods 16, 1139-1145. https://doi.org/10.1038/s41592-019-0576-7
  2. Aran, D., Looney, A.P., Liu, L., Wu, E., Fong, V., Hsu, A., Chak, S., Naikawadi, R.P., Wolters, P.J., Abate, A.R., et al. (2019). Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163-172. https://doi.org/10.1038/s41590-018-0276-y
  3. Argelaguet, R., Cuomo, A.S.E., Stegle, O., and Marioni, J.C. (2021). Computational principles and challenges in single-cell data integration. Nat. Biotechnol. 39, 1202-1215. https://doi.org/10.1038/s41587-021-00895-7
  4. Barkas, N., Petukhov, V., Nikolaeva, D., Lozinsky, Y., Demharter, S., Khodosevich, K., and Kharchenko, P.V. (2019). Joint analysis of heterogeneous single-cell RNA-seq dataset collections. Nat. Methods 16, 695-698. https://doi.org/10.1038/s41592-019-0466-z
  5. Barrett, T., Wilhite, S.E., Ledoux, P., Evangelista, C., Kim, I.F., Tomashevsky, M., Marshall, K.A., Phillippy, K.H., Sherman, P.M., Holko, M., et al. (2013). NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res. 41(Database issue), D991-D995.
  6. Blondel, V.D., Guillaume, J.L., Lambiotte, R., and Lefebvre, E. (2008). Fast unfolding of communities in large networks. J. Stat. Mech. 2008, P10008.
  7. Bolstad, B.M., Irizarry, R.A., Astrand, M., and Speed, T.P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185-193. https://doi.org/10.1093/bioinformatics/19.2.185
  8. Brennecke, P., Anders, S., Kim, J.K., Kolodziejczyk, A.A., Zhang, X., Proserpio, V., Baying, B., Benes, V., Teichmann, S.A., Marioni, J.C., et al. (2013). Accounting for technical noise in single-cell RNA-seq experiments. Nat. Methods 10, 1093-1095. https://doi.org/10.1038/nmeth.2645
  9. Bryois, J., Calini, D., Macnair, W., Foo, L., Urich, E., Ortmann, W., Iglesias, V.A., Selvaraj, S., Nutma, E., Marzin, M., et al. (2022). Cell-type-specific cis-eQTLs in eight human brain cell types identify novel risk genes for psychiatric and neurological disorders. Nat. Neurosci. 25, 1104-1112. https://doi.org/10.1038/s41593-022-01128-z
  10. Buettner, F., Natarajan, K.N., Casale, F.P., Proserpio, V., Scialdone, A., Theis, F.J., Teichmann, S.A., Marioni, J.C., and Stegle, O. (2015). Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol. 33, 155-160. https://doi.org/10.1038/nbt.3102
  11. Butler, A., Hoffman, P., Smibert, P., Papalexi, E., and Satija, R. (2018). Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411-420. https://doi.org/10.1038/nbt.4096
  12. Bzdok, D., Altman, N., and Krzywinski, M. (2018). Statistics versus machine learning. Nat. Methods 15, 233-234. https://doi.org/10.1038/nmeth.4642
  13. Chen, H.I., Jin, Y., Huang, Y., and Chen, Y. (2016). Detection of high variability in gene expression from single-cell RNA-seq profiling. BMC Genomics 17 Suppl 7, 508.
  14. Cheng, S., Li, Z., Gao, R., Xing, B., Gao, Y., Yang, Y., Qin, S., Zhang, L., Ouyang, H., Du, P., et al. (2021). A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell 184, 792-809.e23. https://doi.org/10.1016/j.cell.2021.01.010
  15. Csardi, G. and Nepusz, T. (2006). The igraph software package for complex network research. InterJournal, Complex Systems 1695, 1-9.
  16. Giorgino, T. (2009). Computing and visualizing dynamic time warping alignments in R: the dtw Package. J. Stat. Softw. 31, 1-24. https://doi.org/10.18637/jss.v031.i07
  17. Giustacchini, A., Thongjuea, S., Barkas, N., Woll, P.S., Povinelli, B.J., Booth, C.A.G., Sopp, P., Norfo, R., Rodriguez-Meira, A., Ashley, N., et al. (2017). Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia. Nat. Med. 23, 692-702. https://doi.org/10.1038/nm.4336
  18. Greene, W.H. (1994). Accounting for Excess Zeros and Sample Selection in Poisson and Negative Binomial Regression Models (New York: New York University).
  19. Haghverdi, L., Lun, A.T.L., Morgan, M.D., and Marioni, J.C. (2018). Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 421-427. https://doi.org/10.1038/nbt.4091
  20. Hie, B., Bryson, B., and Berger, B. (2019). Efficient integration of heterogeneous single-cell transcriptomes using Scanorama. Nat. Biotechnol. 37, 685-691. https://doi.org/10.1038/s41587-019-0113-3
  21. Johnson, W.E., Li, C., and Rabinovic, A. (2007). Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118-127. https://doi.org/10.1093/biostatistics/kxj037
  22. Kadoki, M., Patil, A., Thaiss, C.C., Brooks, D.J., Pandey, S., Deep, D., Alvarez, D., von Andrian, U.H., Wagers, A.J., Nakai, K., et al. (2017). Organism-level analysis of vaccination reveals networks of protection across tissues. Cell 171, 398-413.e21. https://doi.org/10.1016/j.cell.2017.08.024
  23. Kim, Y., Kim, T.K., Kim, Y., Yoo, J., You, S., Lee, I., Carlson, G., Hood, L., Choi, S., and Hwang, D. (2011). Principal network analysis: identification of subnetworks representing major dynamics using gene expression data. Bioinformatics 27, 391-398. https://doi.org/10.1093/bioinformatics/btq670
  24. Korsunsky, I., Millard, N., Fan, J., Slowikowski, K., Zhang, F., Wei, K., Baglaenko, Y., Brenner, M., Loh, P.R., and Raychaudhuri, S. (2019). Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289-1296. https://doi.org/10.1038/s41592-019-0619-0
  25. Kotliar, D., Veres, A., Nagy, M.A., Tabrizi, S., Hodis, E., Melton, D.A., and Sabeti, P.C. (2019). Identifying gene expression programs of cell-type identity and cellular activity with single-cell RNA-Seq. Elife 8, e43803.
  26. Kriebel, A.R. and Welch, J.D. (2022). UINMF performs mosaic integration of single-cell multi-omic datasets using nonnegative matrix factorization. Nat. Commun. 13, 780.
  27. Li, X., Wang, K., Lyu, Y., Pan, H., Zhang, J., Stambolian, D., Susztak, K., Reilly, M.P., Hu, G., and Li, M. (2020). Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis. Nat. Commun. 11, 2338.
  28. Lin, Y., Ghazanfar, S., Wang, K.Y.X., Gagnon-Bartsch, J.A., Lo, K.K., Su, X., Han, Z.G., Ormerod, J.T., Speed, T.P., Yang, P., et al. (2019). scMerge leverages factor analysis, stable expression, and pseudoreplication to merge multiple single-cell RNA-seq datasets. Proc. Natl. Acad. Sci. U. S. A. 116, 9775-9784. https://doi.org/10.1073/pnas.1820006116
  29. Lopez, R., Regier, J., Cole, M.B., Jordan, M.I., and Yosef, N. (2018). Deep generative modeling for single-cell transcriptomics. Nat. Methods 15, 1053-1058. https://doi.org/10.1038/s41592-018-0229-2
  30. Lotfollahi, M., Naghipourfar, M., Theis, F.J., and Wolf, F.A. (2020). Conditional out-of-distribution generation for unpaired data using transfer VAE. Bioinformatics 36(Suppl_2), i610-i617. https://doi.org/10.1093/bioinformatics/btaa800
  31. Lotfollahi, M., Wolf, F.A., and Theis, F.J. (2019). scGen predicts single-cell perturbation responses. Nat. Methods 16, 715-721. https://doi.org/10.1038/s41592-019-0494-8
  32. Luecken, M.D., Buttner, M., Chaichoompu, K., Danese, A., Interlandi, M., Mueller, M.F., Strobl, D.C., Zappia, L., Dugas, M., Colome-Tatche, M., et al. (2022). Benchmarking atlas-level data integration in single-cell genomics. Nat. Methods 19, 41-50. https://doi.org/10.1038/s41592-021-01336-8
  33. Lun, A.T., McCarthy, D.J., and Marioni, J.C. (2016). A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Res. 5, 2122.
  34. McKellar, D.W., Walter, L.D., Song, L.T., Mantri, M., Wang, M.F.Z., De Vlaminck, I., and Cosgrove, B.D. (2021). Large-scale integration of singlecell transcriptomic data captures transitional progenitor states in mouse skeletal muscle regeneration. Commun. Biol. 4, 1280.
  35. Molania, R., Gagnon-Bartsch, J.A., Dobrovic, A., and Speed, T.P. (2019). A new normalization for Nanostring nCounter gene expression data. Nucleic Acids Res. 47, 6073-6083. https://doi.org/10.1093/nar/gkz433
  36. Morabito, S., Miyoshi, E., Michael, N., Shahin, S., Martini, A.C., Head, E., Silva, J., Leavy, K., Perez-Rosendahl, M., and Swarup, V. (2021). Single-nucleus chromatin accessibility and transcriptomic characterization of Alzheimer's disease. Nat. Genet. 53, 1143-1155. https://doi.org/10.1038/s41588-021-00894-z
  37. Polanski, K., Young, M.D., Miao, Z., Meyer, K.B., Teichmann, S.A., and Park, J.E. (2020). BBKNN: fast batch alignment of single cell transcriptomes. Bioinformatics 36, 964-965. https://doi.org/10.1093/bioinformatics/btz625
  38. Regev, A., Teichmann, S.A., Lander, E.S., Amit, I., Benoist, C., Birney, E., Bodenmiller, B., Campbell, P., Carninci, P., Clatworthy, M., et al. (2017). The human cell atlas. Elife 6, e27041.
  39. Reichart, D., Lindberg, E.L., Maatz, H., Miranda, A.M.A., Viveiros, A., Shvetsov, N., Gartner, A., Nadelmann, E.R., Lee, M., Kanemaru, K., et al. (2022). Pathogenic variants damage cell composition and single cell transcription in cardiomyopathies. Science 377, eabo1984.
  40. Risso, D., Perraudeau, F., Gribkova, S., Dudoit, S., and Vert, J.P. (2018). A general and flexible method for signal extraction from single-cell RNA-seq data. Nat. Commun. 9, 284.
  41. Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47.
  42. Smillie, C.S., Biton, M., Ordovas-Montanes, J., Sullivan, K.M., Burgin, G., Graham, D.B., Herbst, R.H., Rogel, N., Slyper, M., Waldman, J., et al. (2019). Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell 178, 714-730.e22. https://doi.org/10.1016/j.cell.2019.06.029
  43. Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M., 3rd, Hao, Y., Stoeckius, M., Smibert, P., and Satija, R. (2019). Comprehensive integration of single-cell data. Cell 177, 1888-1902.e21. https://doi.org/10.1016/j.cell.2019.05.031
  44. Tran, H.T.N., Ang, K.S., Chevrier, M., Zhang, X., Lee, N.Y.S., Goh, M., and Chen, J. (2020). A benchmark of batch-effect correction methods for single-cell RNA sequencing data. Genome Biol. 21, 12.
  45. Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., Lennon, N.J., Livak, K.J., Mikkelsen, T.S., and Rinn, J.L. (2014). The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381-386. https://doi.org/10.1038/nbt.2859
  46. Uchimura, K., Wu, H., Yoshimura, Y., and Humphreys, B.D. (2020). Human pluripotent stem cell-derived kidney organoids with improved collecting duct maturation and injury modeling. Cell Rep. 33, 108514.
  47. Vallejos, C.A., Marioni, J.C., and Richardson, S. (2015). BASiCS: Bayesian analysis of single-cell sequencing data. PLoS Comput. Biol. 11, e1004333.
  48.  Villa, C.E., Cheroni, C., Dotter, C.P., Lopez-Tobon, A., Oliveira, B., Sacco, R., Yahya, A.C., Morandell, J., Gabriele, M., Tavakoli, M.R., et al. (2022). CHD8 haploinsufficiency links autism to transient alterations in excitatory and inhibitory trajectories. Cell Rep. 39, 110615.
  49. Welch, J.D., Kozareva, V., Ferreira, A., Vanderburg, C., Martin, C., and Macosko, E.Z. (2019). Single-cell multi-omic integration compares and contrasts features of brain cell identity. Cell 177, 1873-1887.e17. https://doi.org/10.1016/j.cell.2019.05.006
  50. Xu, C., Lopez, R., Mehlman, E., Regier, J., Jordan, M.I., and Yosef, N. (2021). Probabilistic harmonization and annotation of single-cell transcriptomics data with deep generative models. Mol. Syst. Biol. 17, e9620.
  51. Yang, Z. and Michailidis, G. (2016). A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data. Bioinformatics 32, 1-8. https://doi.org/10.1093/bioinformatics/btv544
  52. Yoon, B.K., Oh, T.G., Bu, S., Seo, K.J., Kwon, S.H., Lee, J.Y., Kim, Y., Kim, J.W., Ahn, H.S., and Fang, S. (2022). The peripheral immune landscape in a patient with myocarditis after the administration of BNT162b2 mRNA vaccine. Mol. Cells 45, 738-748. https://doi.org/10.14348/molcells.2022.0031
  53. Young, A.L., Marinescu, R.V., Oxtoby, N.P., Bocchetta, M., Yong, K., Firth, N.C., Cash, D.M., Thomas, D.L., Dick, K.M., Cardoso, J., et al. (2018). Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference. Nat. Commun. 9, 4273.