DOI QR코드

DOI QR Code

A Validation Study on Structural Load Analyses of TiltRotors in Wind Tunnel

풍동 시험용 틸트로터의 구조 하중 해석의 검증 연구

  • Ui-Jin Hwang (Department of Aerospace Engineering, Chungnam National University ) ;
  • Jae-Sang Park (Department of Aerospace Engineering, Chungnam National University ) ;
  • Myeong-Kyu Lee (UAM Research Division, Korea Aerospace Research Institute)
  • 황의진 (충남대학교 항공우주공학과 ) ;
  • 박재상 (충남대학교 항공우주공학과 ) ;
  • 이명규 (한국항공우주연구원 항공연구소 UAM 연구부)
  • Received : 2022.12.08
  • Accepted : 2023.02.20
  • Published : 2023.04.30

Abstract

This study conducted aeromechanics modeling and structural load analyses of Tilt Rotor Aeroacoustic Model (TRAM), a 25% scaled V-22 tiltrotor model used in wind tunnel tests. A rotorcraft comprehensive analysis code, CAMRAD II, was used. Analysis results of this study in low-speed forward flights were compared with DNW test and previous analysis results. Blade flap bending moments were in good agreement with measured data. Mean values and oscillatory loads for lead-lag bending and torsion moments were slightly different from measured data. However, when mean values were removed, results of structural loads for one rotor revolution were moderately compared with wind tunnel tests and previous analyses. Total forces and half peak-to-peak forces of the pitch link reasonably well matched with previous analysis results and measured data. Finally, harmonic magnitudes of blade structural loads were investigated.

본 연구에서는 V-22 Osprey 틸트로터의 25% 축소 모델인 TRAM에 대하여 회전익기 통합 해석 코드인 CAMRAD II를 이용하여 프롭로터의 Aeromechanics 모델링과 블레이드 및 피치 링크에 대한 구조 하중 해석을 수행한 후, DNW 풍동 시험 및 선행 해석 연구 결과와 상호 비교하였다. 본 연구에서는 저속 전진 비행 시 블레이드 플랩 굽힘 모멘트의 구조 하중 및 진동 하중 변화를 풍동 시험 결과에 대하여 비교적 잘 예측하였다. 리드-래그 굽힘 및 비틀림 모멘트의 구조 하중 및 진동 하중 해석은 풍동 시험과 다소 다르게 얻어졌으나, 평균값을 제거하였을 때 로터 회전 한 바퀴당 구조 하중 해석 결과가 풍동 시험 및 선행 해석 연구와 비교적 유사하였다. 피치 링크의 구조 하중 및 진동 하중 해석은 전반적으로 선행 연구의 시험 및 해석 결과와 유사하게 얻어졌다. 마지막으로 블레이드 구조 진동 하중의 조화 성분 해석 및 비교를 통하여 블레이드 리드-래그 굽힘 및 비틀림 모멘트의 오차 발생 원인을 분석하였다.

Keywords

Acknowledgement

본 연구는 2020년도 정부(교육부)의 재원으로 한국연구재단의 기초연구사업의 지원을 받아 수행되었습니다(2020R1I1A3071793). 본 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(2021R1A5A1031868). 본 논문의 일부는 한국항공우주학회 2022년 추계학술대회에서 발표되었습니다.

References

  1. D. K. Kim, "Technology trend on the future vertical lift (rotorcraft)," Current Industrial and Technological Trends in Aerospace, vol. 19, no. 1, pp. 51-61, July 2021. 
  2. M. Weisgerber, "Army chooses Bell V-280 to replace its Black Hawk helicopters," Defense One, December 5, 2022, URL:https://www.defenseone.com/business/2022/12/army-chooses-bell-v-280-replace-its-black-hawk-helicopters/380487/. 
  3. H. Yeo, and M. Potsdam, "Rotor structural loads analysis using coupled computational fluid dynamics/computational structural dynamics," Journal of Aircraft, vol. 53, no. 1, pp. 87-105, January 2016.  https://doi.org/10.2514/1.C033194
  4. M. K. Lee, and C. H. Lee, "Increasing endurance performance of tiltrotor UAV using extended wing," Journal of Aerospace System Engineering, vol. 10, no. 1, pp. 111-117, March 2016.  https://doi.org/10.20910/JASE.2016.10.1.111
  5. M. J. Kim, and M. K. Lee, "Conceptual design and study on the performance enhancement of tilt rotor UAV for disaster and policing operation," Journal of Aerospace System Engineering, vol. 15, no. 1, pp. 40-46, February 2021.  https://doi.org/10.20910/JASE.2021.15.1.40
  6. S. M. Swanson, M. S. McCluer, G. K. Yamauchi, and A. A. Swanson, "Airloads measurements from a 1/4-scale tiltrotor wind tunnel test," Proc. of 25th European Rotorcraft Forum, September 1999. 
  7. R. L. Marr, "Wind tunnel test results of 25 foot tilt rotor during autorotation," NASA-CR-137824, February 1976. 
  8. F. F. Felker, M. D. Betzina, and D. B. Signor, "Performance and loads data from a hover test of a full-scale XV-15 rotor," NASA TM-86833, November 1985. 
  9. Bell Helicopter Company, "Advancement of proprotor technology. Task II - wind-tunnel test results," NASA CR-114363, September 1971. 
  10. W. Johnson, "Calculation of tilt rotor aeroacoustic model (TRAM DNW) performance, airloads, and structural loads," Proc. of the American Helicopter Society Aeromechanics Specialists Meeting, November 2000. 
  11. W. Johnson, "Influence of wake models on calculated tiltrotor aerodynamics," Proc. of the American Helicopter Society Aerodynamics, Acoustics, and Test and Evaluation Technical Specialists Meeting, January 2002. 
  12. J. C. Ho, B. Jayaraman, and H. Yeo, "Coupled computational fluid dynamics and comprehensive analysis calculations of a gimballed tiltrotor," AIAA Journal, vol. 57, no. 10, pp. 4433-4446, October 2019.  https://doi.org/10.2514/1.J057394
  13. Z. Du, and M. S. Selig, "A 3-D stall-delay model for horizontal axis wind turbine performance prediction," Proc. of 1998 ASME Wind Energy Symposium, January 1998. 
  14. U. J. Hwang, J. S. Park, and M. K. Lee, "A validation study on the performance and load analyses of tiltrotors in wind tunnel," Journal of the Korean Society for Aeronautical and Space Sciences, Accepted for publication, January 2022. 
  15. M. K. Farrell, "Aerodynamic design of the V-22 Osprey proprotor," Proc. of the 45th Annual Forum of the American Helicopter Society, pp. 1-13, May 1989. 
  16. H. Yeo, and W. Johnson, "Comparison of rotor structural loads calculated using comprehensive analysis," Proc. of the 31st European Rotorcraft Forum, September 2005.