과제정보
본 연구는 교육부와 한국연구재단 3단계 산학연협력 선도대학 육성사업(LINC 3.0)의 지원으로 진행된 것입니다.
참고문헌
- Schulte SM, Mooney WD. An updated global earthquake catalogue for stable continental regions: Reassessing the correlation with ancient rifts. Geophysical Journal International. 2005;161(3):707-721. https://doi.org/10.1111/j.1365-246X.2005.02554.x
- Johnston AC. Seismic moment assessment of earthquakes in stable continental regions-I. Instrumental seismicity. Geophysical Journal International. 1996;124(2):381-414. https://doi.org/10.1111/j.1365-246X.1996.tb07028.x
- Calais E, Camelbeeck T, Stein S, Liu M, Craig TJ. A new paradigm for large earthquakes in stable continental plate interiors. Geophysical Research Letters. 2016;43(20):10,621-10,637.
- Kim HS, Sun CG, Cho HI. Geospatial Assessment of the Post-Earthquake Hazard of the 2017 Pohang Earthquake Considering Seismic Site Effects. International Journal of Geo-Information. 2018;7(9):375.
- Kim K, Seo W, Han J, Kwon J, Kang SY, Ree J, Kim S, Liu K. The 2017 ML 5.4 Pohang earthquake sequence, Korea, recorded by a dense seismic network. Tectonophysics. 2020;774:228306.
- Boore DM. Prediction of Ground Motion Using the Stochastic Method. Pure and Applied Geophysics. 2003;160:635-676. https://doi.org/10.1007/PL00012553
- Ameri G, Oth A, Pilz M, Bindi D, Parolai S, Luzi L, Mucciarelli M, Cultrera G. Separation of source and site effects by generalized inversion technique using the aftershock recordings of the 2009 L'Aquila earthquake. Bulletin of Earthquake Engineering. 2011;9:717-739. https://doi.org/10.1007/s10518-011-9248-4
- Nakamura Y. A Method for Dynamic Characteristics Estimation of Subsurface Using Microtremor on the Ground Surface. Quarterly Report of Railway Technical Research. 1989;30:25-33.
- Borcherdt RD. Effects of Local Geology on Ground Motion Near San Francisco Bay. Bulletin of the Seismological Society of America. 1970;60(1):29-61.
- Andrews DJ. Objective Determination of Source Parameters and Similarity of Earthquakes of Different Size. Geophysical Monographs Series. 1986;37:259-267. https://doi.org/10.1029/GM037p0259
- Castro RR, Anderson JG, Singh SK. Site response, attenuation and source spectra of S waves along the Guerrero, Mexico, subduction zone. Bulletin of the Seismological Society of America. 1990;80:1481-1503.
- Parolai S, Bindi D, Augliera P. Application of the Generalized Inversion Technique (GIT) to a Microzonation Study: Numerical Simulations and Comparison with Different Site-Estimation Techniques. Bulletin of the Seismological Society of America. 2000;90(2):286-297. https://doi.org/10.1785/0119990041
- Jee HW, Han SW. Regional Ground Motion Prediction Equation Developed for the Korean Peninsula Using Recorded and Simulated Ground Motions. Journal of Earthquake Engineering. 2022;26(10):5384-5406. https://doi.org/10.1080/13632469.2021.1871682
- Yefei R, Ruizhi W, Yamanaka H, Kashima Y. Site effects by generalized inversion technique using strong motion recordings of the 2008 Wenchuan earthquake. Earthquake Engineering and Engineering Vibration. 2013;12(2).
- Dutta U, Martirosyan A., Biswas N, Papageorgiou A, Combellick R. Estimation of S-Wave Site Response in Anchorage, Alaska, from Weak-Motion Data Using Generalized Inversion Method. Bulletin of the Seismological Society of America. 2001;91(2):335-346. https://doi.org/10.1785/0120000119
- Pacor F, Spallarossa D, Oth A, Luzi L, Puglia R, Cantore L, Mercuri A, D'Amico M, Bindi D. Spectral models for ground motion prediction in the L'Aquila region (central Italy): evidence for stress-drop dependence on magnitude and depth. Geophysical Journal International. 2016;204(2):697-718. https://doi.org/10.1093/gji/ggv448
- Klin P, Laurenzano G, Priolo E. GITANES: A MATLAB Package for Estimation of Site Spectral Amplification with the Generalized Inversion Technique. Seismological Research Letters. 2018;89(1):182-190. https://doi.org/10.1785/0220170080
- Bindi D, Kotha SR. Spectral decomposition of the Engineering Strong Motion (ESM) flat file: regional attenuation, source scaling and Arias stress drop. Bulletin of Earthquake Engineering. 2020;18:2581-2606. https://doi.org/10.1007/s10518-020-00796-1
- Jee HW, Han SW. Development of the Ground Motion Simulation Model for the Korean Peninsula. Journal of the Architectural Institute of Korea. 2020;36(10):159-166. https://doi.org/10.5659/JAIK.2020.36.10.159
- Husid P. Gravity Effects on the Earthquake Response of Yielding Structures. PhD. thesis. California Institute of Technology. 1967;1-153.
- McCann MWJ, Shah HC. Determining Strong Motion Duration of Earthquakes. Bulletin of the Seismological Society of America. 1979;69(4):1253-1265.
- Yenier E, Atkinson GM. An Equivalent Point-Source Model for Stochastic Simulation of Earthquake Ground Motions in California. Bulletin of the Seismological Society of America. 2015;105(3):1435-1455. https://doi.org/10.1785/0120140254
- Papazafeiropoulos G, Plevris V. OpenSeismoMatlab: A New Open-source Software for Strong Ground Motion Data Processing. Heliyon. 2018;4(9):e00784.
- Boore DM, Watson-Lamprey J, Abrahamson NA. Orientation-Independent Measures of Ground Motion. Bulletin of the Seismological Society of America. 2006;96(4A):1502-1511. https://doi.org/10.1785/0120050209
- Oth A, Bindi D, Parolai S, Giacomo DD. Spectral analysis of K-NET and KIK-net data in Japan. Part II: on attenuation characteristics, source spectra, and site response of borehole and surface stations. Bulletin of the Seismological Society of America. 2011;101(2):667-687. https://doi.org/10.1785/0120100135
- Seyhan E, Stewart JP. Semi-Empirical Nonlinear Site Amplification from NGA-West2 Data and Simulations. Earthquake Spectra. 2014;30(3):1241-1256. https://doi.org/10.1193/063013EQS181M
- Zafarani H, Soghrat MR. Single-Station Sigma for the Iranian Strong Motion Stations. Pure and Applied Geophysics volume. 2017;174:4077-4099. https://doi.org/10.1007/s00024-017-1613-z