Acknowledgement
본 논문은 2022년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지차제-대학 협력기반 지역혁신 사업(2021RIS-004)의 지원을 받아 수행되었음
References
- J. Y. Baek, and M. C. Lee, "Lane Recognition Using Lane Prominence Algorithm for Unmanned Vehicles", Journal of Institute of Control, Robotics and Systems (ICROS), Vol. 16, No. 7, pp. 625-631, 2010 https://doi.org/10.5302/J.ICROS.2010.16.7.625
- K.-S. Lee, S.-W. Heo, and T.-H. Park, "A Lane Detection and Tracking Method Using Image Saturation and Road Width Data", Journal of Institute of Control, Robotics and Systems (ICROS), Vol. 25, No. 5, pp. 476-483, 2019 https://doi.org/10.5302/J.ICROS.2019.19.0008
- Z. Kim, "Robust lane detection and tracking in challenging scenarios," IEEE Transactions on intelligent trans- portation systems, vol. 9, no. 1, pp. 16-26, 2008. https://doi.org/10.1109/TITS.2007.908582
- M. Aly, "Real time detection of lane markers in urban streets," IEEE Intelligent Vehicles Symposium. pp. 7-12, 2008.
- G. Liu, F. Worgotter, and I. Markelic, "Combining statistical hough ' transform and particle filter for robust lane detection and tracking," IEEE Intelligent Vehicles Symposium. pp. 993-997, 2010.
- K. B. Kim and D. H. Song, "Real time road lane detection with ransac and hsv color transformation," Journal of information and communication convergence engineering, vol. 15, no. 3, pp. 187-192, 2017. https://doi.org/10.6109/JICCE.2017.15.3.187
- T. Zheng, H. Fang, Y. Zhang, W. Tang, Z. Yang, H. Liu, and D. Cai, "Resa: Recurrent feature-shift aggregator for lane detection," Proc. of the AAAI Conference on Artificial Intelligence, vol. 35, no. 4, pp. 3547-3554, 2021.
- X. Pan, J. Shi, P. Luo, X. Wang, and X. Tang, "Spatial as deep: Spatial cnn for traffic scene understanding," Proc. of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.
- D. Neven, B. De Brabandere, S. Georgoulis, M. Proesmans, and L. Van Gool, "Towards end-to-end lane detection: an instance segmenta tion approach," IEEE intelligent vehicles symposium (IV). pp. 286-291, 2018.
- L. Tabelini, R. Berriel, T. M. Paixao, C. Badue, A. F. De Souza, and T. Olivera-Santos, "Keep your eyes on the lane: Attention-guided lane detection," arXiv e-prints, pp. arXiv-2010, 2020.
- H. Xu, S. Wang, X. Cai, W. Zhang, X. Liang, and Z. Li, "Curvelane-nas: Unifying lane-sensitive architecture search and adaptive point blending," in European Conference on Computer Vision. pp. 689-704, Springer, 2020.
- L. Tabelini, R. Berriel, T. M. Paixao, C. Badue, A. F. De Souza, and T. Oliveira-Santos, "Polylanenet: Lane estimation via deep polynomial regression," in 2020 25th International Conference on Pattern Recognition (ICPR). pp. 6150-6156, 2021.
- R. Liu, Z. Yuan, T. Liu, and Z. Xiong, "End-to-end lane shape prediction with transformers," Proc. of the IEEE/CVF winter conference on applications of computer vision, pp. 3694-3702, 2021.
- K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," Proc. of the IEEE conference on computer vision and pattern recognition, pp.770-778, 2016.
- Tusimple/tusimple-benchmark: [Online]. Available: https://github.com/TuSimple/tusimple benchmark/
- Brody Huval, Tao Wang, Sameep Tandon, Jeff Kiske, Will Song, Joel Pazhayampallil, Mykhaylo Andriluka, Pranav Rajpurkar, Toki Migimatsu, Royce Cheng-Yue, Fernando Mujica, Adam Coates, Andrew Y. Ng, "An empirical evaluation of deep learning on highway driving," arXiv pre- print arXiv:1504.01716, 2015.
- Z. Qin, H. Wang, and X. Li, "Ultra fast structure-aware deep lane detec tion," in European Conference on Computer Vision. pp. 276-291, Springer, 2020.
- S. Yoo, H. S. Lee, H. Myeong, S. Yun, H. Park, J. Cho, and D. H. Kim, "End-to-end lane marker detection via row-wise classification," Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1006-1007, 2020.
- X. Li, J. Li, X. Hu, and J. Yang, "Line-cnn: End-to-end traffic line detection with line proposal unit," IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 1, pp. 248-258, 2019. https://doi.org/10.1109/TITS.2019.2890870
- S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards real time object detection with region proposal networks," Advances in neural information processing systems, vol. 28, 2015.
- Y. Dong, S. Patil, B. van Arem, and H. Farah, "A hy- brid spatial-temporal deep learning architecture for lane detection," Computer-Aided Civil and Infrastructure Engineering, 2022.
- O. Ronneberger, P. Fischer, and T. Brox, "U-Net: Convolutional networks for biomedical image segmentation," International Conference on Medical image com- puting and computer-assisted intervention. pp. 234-241, Springer, 2015.
- E. Parzen, "On estimation of a probability density function and mode," The annals of mathematical statistics, vol. 33, no. 3, pp. 1065-1076, 1962.
- CULane dataset. [Online]. Available: https://xingangpan.github.io/projects/CULane.html
- Zhan Qu, Huan Jin, Yang Zhou, Zhen Yang, Wei Zhang, "Focus on local: Detecting lane marker from bottom up via key point." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021.
- Tu Zheng, Yifei Huang, Yang Liu, Wenjian Tang, Zheng Yang, Deng Cai, Xiaofei He, "CLRNet: Cross Layer Refinement Network for Lane Detection" Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.
- Seungki Min, Insung Ihm. Density Estimation Technique for Effective Representation of Light In-scattering. Journal of the Korea Computer Graphics Society, vol. 16, no. 1, 9-20, 2010. https://doi.org/10.15701/kcgs.2010.16.1.9
- De Gelder, E., Cator, E., Paardekooper, J. P., Den Camp, O. O., & De Schutter, B. Constrained sampling from a kernel density estimator to generate scenarios for the assessment of automated vehicles. In 2021 IEEE Intelligent Vehicles Symposium Workshops, pp. 203-208, 2021.