DOI QR코드

DOI QR Code

Design comparison of Fixed Offshore Structures Designed by WSD and LRFD Methods

허용응력설계법 및 하중저항계수설계법에 의한 고정식 해양구조물 설계결과 비교

  • 정배근 (충남대학교 융복합시스템공학과 ) ;
  • 조두용 (충남대학교 융복합시스템공학과 )
  • Received : 2023.01.28
  • Accepted : 2023.03.13
  • Published : 2023.04.30

Abstract

When designing fixed jacket structures, overseas design standards are applied due to the absence of domestic design methods. Although the US API standards are mainly applied, API RP 2A suggests two design methods: the allowable stress design method (WSD) and the load resistance coefficient method (LRFD), and is applied according to the designer's judgment. In this study, the stress ratio of the two design methods was reviewed and compared using SACS, an analysis program dedicated to marine structures, for fixed marine structures actually installed on the domestic coast. As a result of the review, it was found that the LRFD design method showed a greater stress ratio for extreme load analysis and transportation analysis, and the WSD design method showed a greater stress ratio for loading and lifting. Therefore, when applying the design method, it is considered appropriate to select the final design method considering safety and economic feasibility after conducting an applicability review for the two design methods.

고정식 자켓구조물 설계 시 국내 설계법의 부재로 해외 설계기준을 적용하고 있다. 특히, 미국의 API기준을 주로 적용하고 있으나 API RP 2A는 허용응력설계법(WSD)과 하중저항계수법(LRFD)의 두 설계법을 제시하고 있고 설계자의 판단에 따라 적용하고 있는 실정이다. 본 연구에서는 국내 연안에 실제 설치된 고정식 해양구조물에 대해 해양구조물 전용프로그램인 SACS를 이용하여 두 설계법에 대한 응력비를 검토비교 하였다. 검토결과, 환경하중의 영향이 큰 극한하중해석과 운송해석 시에는 LRFD설계법이, 자중의 영향이 큰 평상시 하중해석과 선적 및 인양 시에는 WSD설계법이 더 큰 응력비를 보여주고 있어 기본설계 시 두 설계법에 대한 적용성 검토를 수행한 후 안전성과 경제성 등을 고려하여 최종 설계법을 선택하는 것이 적정하다고 판단된다.

Keywords

References

  1. Ferguson, M. C. (1990), A Comparative Study using API RP 2A-LRFD, Annual Offshore Technology Conference 22nd, 341-351.
  2. Jang, H. S., Goo, J. S., Bae, D. M., and Bae, S. Y.(2012), Analysis of Offshore Wind Turbine Considering Environmental Loads, KSCE 2012 Convention, 149-152.
  3. Sun, M. Y., Lee, S. B., Lee, K. Y., and Moon, B. Y. (2014), The Study on Substructure Design and Analysis for 5MW Offshore Wind Turbine, Journal of the Korean Society of Marine Engineering, 38(9), 1075-1080. https://doi.org/10.5916/jkosme.2014.38.9.1075
  4. Lee, D. H., Choi, H. S., Ha, S. Y., Jang, H. S., and Kim, H. S. (2017), The Design of a Jacket Substructure for Offshore Wind Turbine based on Offshore Wind Turbine Design Criteria, Journal of New and Renewable Energy, 85-89.
  5. Kim, W. S., Jeong, Y. S., Kim, K. D., Kim, K. J., Lee, J. H. (2016), Seismic Analysis for Multi-pile Concrete Foundation in 5MW Class Offshore Wind Turbine, Journal of Computational Structural Engineering Institute of Korea, 29(3), 209-218. https://doi.org/10.7734/COSEIK.2016.29.3.209
  6. SACS User's Manual. (2018), Introduction of Linear and Nonlinear Analysis and it's Application of Shell Modelling, 2, 50-65.
  7. American Petroleum Institute (API). (2014), Recommended Practice for Planning, Designing and Constructiong Fixed Offshore Platforms- Working Stress Design, API RP-2A-WSD, 22nd Edition, 38-44.
  8. Ministry of Land, Infrastructure and Transportation. (2018), Earthquake Design Standard, Korea Design Standard(KDS) 11 50 25, 15-50.