DOI QR코드

DOI QR Code

CFD study of an iterative focused wave generation method

  • Haoyuan Gu (Zachry Department of Civil and Environmental Engineering, Texas A&M University) ;
  • Hamn-Ching Chen (Zachry Department of Civil & Environmental Engineering and Ocean Engineering, Texas A&M University)
  • 투고 : 2022.12.08
  • 심사 : 2023.02.05
  • 발행 : 2023.03.25

초록

An iterative focused wave generation method is developed and implemented in a local analytic based Navier-Stokes solver. This wave generation method is designed to reproduce the target focused wave by matching the target amplitude spectrum and phase angle. A 4-waves decomposition scheme is utilized to obtain the linearised component of the output wave. A model test studying the interaction between different focused waves and a fixed cylinder is selected as the target for the wave generation approach. The numerical wave elevations and dynamic pressure on the cylinder are compared with the experimental measurement and other state-of-the-art numerical methods' results. The overall results prove that the iterative adjustment method is able to optimize the focused wave generated by a CFD approach.

키워드

과제정보

The authors would like to appreciate the computing resources supported by the High Performance Research Computing (HPRC) Center, Texas A&M University. The authors are particularly grateful to Dr. Buldakov and Dr. Stagonas for their kind and patient guidance in the wave spectral decomposition method.

참고문헌

  1. Bai, W. and Taylor, R.E. (2007), "Numerical simulation of fully nonlinear regular and focused wave diffraction around a vertical cylinder using domain decomposition", Appl. Ocean Res., 29(1-2), 55-71. https://doi.org/10.1016/j.apor.2007.05.005.
  2. Baldock, T. and Swan, C. (1994), "Numerical calculations of large transient water waves", Appl. Ocean Res., 16(2), 101-112. https://doi.org/10.1016/0141-1187(94)90006-X.
  3. Baldock, T., Swan, C. and Taylor, P. (1996), "A laboratory study of nonlinear surface waves on water", Philos. T. R. Soc. A, 354(1707), 649-676. https://doi.org/10.1098/rsta.1996.0022.
  4. Bandringa, H., Jaouen, F., Helder, J. and Bunnik, T. (2021), "On the validity of CFD for simulating a shallow water CALM buoy in extreme waves", Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, volume 85116, page V001T01A037, American Society of Mechanical Engineers.
  5. Buldakov, E., Stagonas, D. and Simons, R. (2017), "Extreme wave groups in a wave flume: Controlled generation and breaking onset", Coast. Eng., 128, 75-83. https://doi.org/10.1016/j.coastaleng.2017.08.003.
  6. Chaplin, J.R. (1996), "On frequency-focusing unidirectional waves", Int. J. Offshore Polar Eng., 6(2).
  7. Chen, H., Qian, L., Bai, W., Ma, Z., Lin, Z. and Xue, M.A. (2019), "Oblique focused wave group generation and interaction with a fixed FPSO-shaped body: 3D CFD simulations and comparison with experiments", Ocean Eng., 192, 106524. https://doi.org/10.1016/j.oceaneng.2019.106524.
  8. Chen, H.C. (2010), "Time-domain simulation of nonlinear wave impact loads on fixed offshore platform and decks", Int. J. Offshore Polar, 20(4).
  9. Chen, H.C., Patel, V.C. and Ju, S. (1990), "Solutions of Reynolds-averaged Navier-Stokes equations for threedimensional incompressible flows", J. Comput. Phys., 88(2), 305-336. https://doi.org/10.1016/0021-9991(90)90182-Z.
  10. Chen, H.C. and Yu, K. (2009), "CFD simulations of wave-current-body interactions including greenwater and wet deck slamming", Comput. Fluids, 38(5), 970-980. https://doi.org/10.1016/j.compfluid.2008.01.026.
  11. Christou, M. and Ewans, K. (2014), "Field measurements of rogue water waves", J. Phys. Oceanogr., 44(9), 2317-2335. https://doi.org/10.1175/JPO-D-13-0199.1.
  12. Dysthe, K., Krogstad, H.E. and Muller, P. (2008), "Oceanic rogue waves", Annu. Rev. Fluid Mech., 40, 287-
  13. https://doi.org/10.1146/annurev.fluid.40.111406.102203.
  14. Fernandez, H., Schimmels, S. and Sriram, V. (2013), "Focused wave generation by means of a self correcting method", Proceedings of the 23rd International Offshore and Polar Engineering Conference, OnePetro.
  15. Fitzgerald, C., Taylor, P.H., Taylor, R.E., Grice, J. and Zang, J. (2014), "Phase manipulation and the harmonic components of ringing forces on a surface-piercing column", P. R. Soc. A: Math. Phy., 470(2168), 20130847. https://doi.org/10.1098/rspa.2013.0847.
  16. Gu, H., Chen, H.C. and Zhao, L. (2019), "Coupled CFD-FEM simulation of hydrodynamic responses of a CALM buoy", Ocean. Syst. Eng., 9(1), 21-42. https:// doi.org/10.12989/ose.2019.9.1.021
  17. Higuera, P., Buldakov, E. and Stagonas, D. (2018), "Numerical modelling of wave interaction with an FPSO using a combination of OpenFOAM R and lagrangian models", Proceedings of the 28th International Ocean and Polar Engineering Conference, OnePetro.
  18. Huang, H. and Chen, H.C. (2021), "Coupled CFD-FEM simulation for the wave-induced motion of a CALM buoy with waves modeled by a level-set approach", Appl. Ocean Res., 110, 102584. https://doi.org/10.1016/j.apor.2021.102584.
  19. Huang, H., Gu, H. and Chen, H.C. (2022), "A new method to couple FEM mooring program with CFD to simulate Six-DoF responses of a moored body", Ocean Eng., 250, 110944. https://doi.org/10.1016/j.oceaneng.2022.110944.
  20. Huang, L. and Zhang, J. (2009), Introduction to Program DWS (Directional Wave Simulation), Technical report, Technical Report, Ocean Engineering Program, Texas A&M University, College.
  21. Jonathan, P. and Taylor, P.H. (1997), "On irregular, nonlinear waves in a spread sea", Offshore Mech. Arct. Eng., 119(1), 37-41. https://doi.org/10.1115/1.2829043.
  22. Kharif, C. and Pelinovsky, E. (2003), "Physical mechanisms of the rogue wave phenomenon", Eur. J. Mech.- B/Fluids, 22(6), 603-634. https://doi.org/10.1016/j.euromechflu.2003.09.002.
  23. Longuet-Higgins, M. (1974), "Breaking waves in deep or shallow water", Proceedings of the 10th Conf. on Naval Hydrodynamics, MIT.
  24. Osher, S. and Sethian, J.A. (1988), "Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations", J. Comput. Phys., 79(1), 12-49. https://doi.org/10.1016/0021-9991(88)90002-2.
  25. Peric, R. and Abdel-Maksoud, M. (2018), "Analytical prediction of reflection coefficients for wave absorbing layers in flow simulations of regular free-surface waves", Ocean Eng., 147, 132-147. https://doi.org/10.1016/j.oceaneng.2017.10.009.
  26. Peric, R. and Abdel-Maksoud, M. (2019), "Damping of non-linear and irregular long-crested freesurface waves using forcing zones", Proceedings of the 11th International Workshop on Ship and Marine Hydrodynamics (IWSH2019).
  27. Pontaza, J., Chen, H. and Reddy, J. (2005), "A local-analytic-based discretization procedure for the numerical solution of incompressible flows", Int. J. Numer. Meth. Fl., 49(6), 657-699. https://doi.org/10.1002/fld.1005.
  28. Rapp, R.J. and Melville, W.K. (1990), "Laboratory measurements of deep-water breaking waves", Philos. T. R. Soc. A, 331(1622), 735-800. https://doi.org/10.1098/rsta.1990.0098.
  29. Schmittner, C., Kosleck, S. and Hennig, J. (2009), "A phase-amplitude iteration scheme for the optimization of deterministic wave sequences", Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering.
  30. Sriram, V., Agarwal, S. and Schlurmann, T. (2021a), "Laboratory study on steep wave Interactions with fixed and moving cylinder", Int. J. Offshore Polar, 31(1), 19-26. https://doi.org/10.17736/ijope.2021.jc808.
  31. Sriram, V., Agarwal, S., Yan, S., Xie, Z., Saincher, S., Schlurmann, T., Ma, Q., Stoesser, T., Zhuang, Y., Han, B. et al. (2021b), "A comparative study on the nonlinear interaction between a focusing wave and cylinder using state-of-the-art solvers: Part A", Int. J. Offshore Polar, 31(1), 1-10. https://doi.org/10.17736/ijope.2021.jc820.
  32. Sriram, V., Schlurmann, T. and Schimmels, S. (2015), "Focused wave evolution using linear and second order wavemaker theory", Appl. Ocean Res., 53, 279-296. https://doi.org/10.1016/j.apor.2015.09.007.
  33. Stagonas, D., Higuera, P. and Buldakov, E. (2018), "Simulating breaking focused waves in CFD: Methodology for controlled generation of first and second order", J. Waterway Port C. ASCE, 144(2). https://doi.org/10.1061/(ASCE)WW.1943-5460.0000420.
  34. Suhs, N. and Tramel, R. (1991), PEGSUS 4.0 user's manual, Technical report, Arnold Engineering Development Center Arnold AFB TN.
  35. Tromans, P.S., Anaturk, A.R. and Hagemeijer, P. (1991), "A new model for the kinematics of large ocean waves-application as a design wave", Proceedings of the 1st international offshore and polar engineering conference, OnePetro.
  36. Ursell, F., Dean, R.G. and Yu, Y. (1960), "Forced small-amplitude water waves: a comparison of theory and experiment", J. Fluid Mech., 7(1), 33-52. https://doi.org/10.1017/S0022112060000037.
  37. Yan, S., Ma, Q., Asnim, W., Sulaiman, Z. and Sun, H. (2020), "Comparative study on focusing wave interaction with cylinder using QALE-FEM and qaleFOAM", Proceedings of the 30th International Ocean and Polar Engineering Conference, OnePetro.
  38. Yu, K. (2007), Level-set RANS method for sloshing and green water simulations, Texas A&M University. Zhou, Y., Xiao, Q., Liu, Y., Incecik, A., Peyrard, C., Li, S. and Pan, G. (2019), "Numerical modelling of dynamic responses of a floating offshore wind turbine subject to focused waves", Energies, 12(18), 3482. https://doi.org/10.3390/en12183482.