Acknowledgement
The authors would like to appreciate the computing resources supported by the High Performance Research Computing (HPRC) Center, Texas A&M University. The authors are particularly grateful to Dr. Buldakov and Dr. Stagonas for their kind and patient guidance in the wave spectral decomposition method.
References
- Bai, W. and Taylor, R.E. (2007), "Numerical simulation of fully nonlinear regular and focused wave diffraction around a vertical cylinder using domain decomposition", Appl. Ocean Res., 29(1-2), 55-71. https://doi.org/10.1016/j.apor.2007.05.005.
- Baldock, T. and Swan, C. (1994), "Numerical calculations of large transient water waves", Appl. Ocean Res., 16(2), 101-112. https://doi.org/10.1016/0141-1187(94)90006-X.
- Baldock, T., Swan, C. and Taylor, P. (1996), "A laboratory study of nonlinear surface waves on water", Philos. T. R. Soc. A, 354(1707), 649-676. https://doi.org/10.1098/rsta.1996.0022.
- Bandringa, H., Jaouen, F., Helder, J. and Bunnik, T. (2021), "On the validity of CFD for simulating a shallow water CALM buoy in extreme waves", Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, volume 85116, page V001T01A037, American Society of Mechanical Engineers.
- Buldakov, E., Stagonas, D. and Simons, R. (2017), "Extreme wave groups in a wave flume: Controlled generation and breaking onset", Coast. Eng., 128, 75-83. https://doi.org/10.1016/j.coastaleng.2017.08.003.
- Chaplin, J.R. (1996), "On frequency-focusing unidirectional waves", Int. J. Offshore Polar Eng., 6(2).
- Chen, H., Qian, L., Bai, W., Ma, Z., Lin, Z. and Xue, M.A. (2019), "Oblique focused wave group generation and interaction with a fixed FPSO-shaped body: 3D CFD simulations and comparison with experiments", Ocean Eng., 192, 106524. https://doi.org/10.1016/j.oceaneng.2019.106524.
- Chen, H.C. (2010), "Time-domain simulation of nonlinear wave impact loads on fixed offshore platform and decks", Int. J. Offshore Polar, 20(4).
- Chen, H.C., Patel, V.C. and Ju, S. (1990), "Solutions of Reynolds-averaged Navier-Stokes equations for threedimensional incompressible flows", J. Comput. Phys., 88(2), 305-336. https://doi.org/10.1016/0021-9991(90)90182-Z.
- Chen, H.C. and Yu, K. (2009), "CFD simulations of wave-current-body interactions including greenwater and wet deck slamming", Comput. Fluids, 38(5), 970-980. https://doi.org/10.1016/j.compfluid.2008.01.026.
- Christou, M. and Ewans, K. (2014), "Field measurements of rogue water waves", J. Phys. Oceanogr., 44(9), 2317-2335. https://doi.org/10.1175/JPO-D-13-0199.1.
- Dysthe, K., Krogstad, H.E. and Muller, P. (2008), "Oceanic rogue waves", Annu. Rev. Fluid Mech., 40, 287-
- https://doi.org/10.1146/annurev.fluid.40.111406.102203.
- Fernandez, H., Schimmels, S. and Sriram, V. (2013), "Focused wave generation by means of a self correcting method", Proceedings of the 23rd International Offshore and Polar Engineering Conference, OnePetro.
- Fitzgerald, C., Taylor, P.H., Taylor, R.E., Grice, J. and Zang, J. (2014), "Phase manipulation and the harmonic components of ringing forces on a surface-piercing column", P. R. Soc. A: Math. Phy., 470(2168), 20130847. https://doi.org/10.1098/rspa.2013.0847.
- Gu, H., Chen, H.C. and Zhao, L. (2019), "Coupled CFD-FEM simulation of hydrodynamic responses of a CALM buoy", Ocean. Syst. Eng., 9(1), 21-42. https:// doi.org/10.12989/ose.2019.9.1.021
- Higuera, P., Buldakov, E. and Stagonas, D. (2018), "Numerical modelling of wave interaction with an FPSO using a combination of OpenFOAM R and lagrangian models", Proceedings of the 28th International Ocean and Polar Engineering Conference, OnePetro.
- Huang, H. and Chen, H.C. (2021), "Coupled CFD-FEM simulation for the wave-induced motion of a CALM buoy with waves modeled by a level-set approach", Appl. Ocean Res., 110, 102584. https://doi.org/10.1016/j.apor.2021.102584.
- Huang, H., Gu, H. and Chen, H.C. (2022), "A new method to couple FEM mooring program with CFD to simulate Six-DoF responses of a moored body", Ocean Eng., 250, 110944. https://doi.org/10.1016/j.oceaneng.2022.110944.
- Huang, L. and Zhang, J. (2009), Introduction to Program DWS (Directional Wave Simulation), Technical report, Technical Report, Ocean Engineering Program, Texas A&M University, College.
- Jonathan, P. and Taylor, P.H. (1997), "On irregular, nonlinear waves in a spread sea", Offshore Mech. Arct. Eng., 119(1), 37-41. https://doi.org/10.1115/1.2829043.
- Kharif, C. and Pelinovsky, E. (2003), "Physical mechanisms of the rogue wave phenomenon", Eur. J. Mech.- B/Fluids, 22(6), 603-634. https://doi.org/10.1016/j.euromechflu.2003.09.002.
- Longuet-Higgins, M. (1974), "Breaking waves in deep or shallow water", Proceedings of the 10th Conf. on Naval Hydrodynamics, MIT.
- Osher, S. and Sethian, J.A. (1988), "Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations", J. Comput. Phys., 79(1), 12-49. https://doi.org/10.1016/0021-9991(88)90002-2.
- Peric, R. and Abdel-Maksoud, M. (2018), "Analytical prediction of reflection coefficients for wave absorbing layers in flow simulations of regular free-surface waves", Ocean Eng., 147, 132-147. https://doi.org/10.1016/j.oceaneng.2017.10.009.
- Peric, R. and Abdel-Maksoud, M. (2019), "Damping of non-linear and irregular long-crested freesurface waves using forcing zones", Proceedings of the 11th International Workshop on Ship and Marine Hydrodynamics (IWSH2019).
- Pontaza, J., Chen, H. and Reddy, J. (2005), "A local-analytic-based discretization procedure for the numerical solution of incompressible flows", Int. J. Numer. Meth. Fl., 49(6), 657-699. https://doi.org/10.1002/fld.1005.
- Rapp, R.J. and Melville, W.K. (1990), "Laboratory measurements of deep-water breaking waves", Philos. T. R. Soc. A, 331(1622), 735-800. https://doi.org/10.1098/rsta.1990.0098.
- Schmittner, C., Kosleck, S. and Hennig, J. (2009), "A phase-amplitude iteration scheme for the optimization of deterministic wave sequences", Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering.
- Sriram, V., Agarwal, S. and Schlurmann, T. (2021a), "Laboratory study on steep wave Interactions with fixed and moving cylinder", Int. J. Offshore Polar, 31(1), 19-26. https://doi.org/10.17736/ijope.2021.jc808.
- Sriram, V., Agarwal, S., Yan, S., Xie, Z., Saincher, S., Schlurmann, T., Ma, Q., Stoesser, T., Zhuang, Y., Han, B. et al. (2021b), "A comparative study on the nonlinear interaction between a focusing wave and cylinder using state-of-the-art solvers: Part A", Int. J. Offshore Polar, 31(1), 1-10. https://doi.org/10.17736/ijope.2021.jc820.
- Sriram, V., Schlurmann, T. and Schimmels, S. (2015), "Focused wave evolution using linear and second order wavemaker theory", Appl. Ocean Res., 53, 279-296. https://doi.org/10.1016/j.apor.2015.09.007.
- Stagonas, D., Higuera, P. and Buldakov, E. (2018), "Simulating breaking focused waves in CFD: Methodology for controlled generation of first and second order", J. Waterway Port C. ASCE, 144(2). https://doi.org/10.1061/(ASCE)WW.1943-5460.0000420.
- Suhs, N. and Tramel, R. (1991), PEGSUS 4.0 user's manual, Technical report, Arnold Engineering Development Center Arnold AFB TN.
- Tromans, P.S., Anaturk, A.R. and Hagemeijer, P. (1991), "A new model for the kinematics of large ocean waves-application as a design wave", Proceedings of the 1st international offshore and polar engineering conference, OnePetro.
- Ursell, F., Dean, R.G. and Yu, Y. (1960), "Forced small-amplitude water waves: a comparison of theory and experiment", J. Fluid Mech., 7(1), 33-52. https://doi.org/10.1017/S0022112060000037.
- Yan, S., Ma, Q., Asnim, W., Sulaiman, Z. and Sun, H. (2020), "Comparative study on focusing wave interaction with cylinder using QALE-FEM and qaleFOAM", Proceedings of the 30th International Ocean and Polar Engineering Conference, OnePetro.
- Yu, K. (2007), Level-set RANS method for sloshing and green water simulations, Texas A&M University. Zhou, Y., Xiao, Q., Liu, Y., Incecik, A., Peyrard, C., Li, S. and Pan, G. (2019), "Numerical modelling of dynamic responses of a floating offshore wind turbine subject to focused waves", Energies, 12(18), 3482. https://doi.org/10.3390/en12183482.