과제정보
This research was supported financially by the National Natural Science Foundation of China (No. 52208452) and China Postdoctoral Science Foundation (No. 2022M710283), which are gratefully appreciated.
참고문헌
- Ali Sadeghian, M., Yang, J., Wang, X.E. and Wang, F. (2021), "Novel adaptive tuned viscous inertance damper (ATVID) with adjustable inertance and damping for structural vibration control", Structures, 29, 814-822. https://doi.org/10.1016/j.istruc.2020.11.050
- Alujevic, N., Cakmak, D., Wolf, H. and Jokic, M. (2018), "Passive and active vibration isolation systems using inerter", J. Sound Vib., 418, 163-183. https://doi.org/10.1016/j.jsv.2017.12.031.
- Asami, T., Nishihara, O. and Baz, A.M. (2002), "Analytical solutions to H∞ and H2 optimization of dynamic vibration absorbers attached to damped linear systems", J. Vib. Acoust., 124(2), 284-295. https://doi.org/10.1115/1.1456458.
- Berardengo, M., Cigada, A., Guanziroli, F. and Manzoni, S. (2015), "Modelling and control of an adaptive tuned mass damper based on shape memory alloys and eddy currents", J. Sound Vib., 349, 18-38. https://doi.org/10.1016/j.jsv.2015.03.036
- Brzeski, P., Lazarek, M. and Perlikowski, P. (2017), "Experimental study of the novel tuned mass damper with inerter which enables changes of inertance", J. Sound Vib., 404, 47-57. https://doi.org/10.1016/j.jsv.2017.05.034
- Chakrabarti, S.K. (1987), Hydrodynamics of offshore structures: WIT Press, Southampton, UK.
- Cummins, W. (1962), "The impulse response function and ship motions", Schiffstechnik, 9, 101-109.
- Det Norske Veritas (2011), Modelling and analysis of marine operations, Det Norske Veritas, Olso, Norway.
- Faltinsen, O. (1993), Sea loads on ships and offshore structures: Cambridge University Press, Cambridge, UK.
- Hu, Y., Wang, J., Chen, M.Z.Q., Li, Z. and Sun, Y. (2018), "Load mitigation for a barge-type floating offshore wind turbine via inerter-based passive structural control", Eng. Struct., 177, 198-209. https://doi.org/10.1016/j.engstruct.2018.09.063
- Huang, H., Mosalam, K.M. and Chang, W.-S. (2020), "Adaptive tuned mass damper with shape memory alloy for seismic application", Eng. Struct., 223. https://doi.org/10.1016/j.engstruct.2020.111171
- Ikago, K., Saito, K. and Inoue, N. (2012), "Seismic control of single-degree-of-freedom structure using tuned viscous mass damper", Earthq. Eng. Struct. Dyn., 41(3), 453-474. https://doi.org/10.1002/eqe.1138
- Javidialesaadi, A. and Wierschem, N.E. (2019), "An inerter-enhanced nonlinear energy sink", Mech. Syst. Signal Process., 129, 449-454. https://doi.org/10.1016/j.ymssp.2019.04.047
- Kim, H.S. and Kang, J.W. (2012), "Semi-active fuzzy control of a wind-excited tall building using multi-objective genetic algorithm", Eng. Struct., 41, 242-257. https://doi.org/10.1016/j.engstruct.2012.03.038
- Lazar, I., Neild, S. and Wagg, D. (2014), "Using an inerter-based device for structural vibration suppression", Earthq. Eng. Struct. Dyn., 43(8), 1129-1147. https://doi.org/10.1002/eqe.2390
- Li, B., Huang, Z., Low, Y.M. and Ou, J. (2013), "Experimental and numerical study of the effects of heave plate on the motion of a new deep draft multi-spar platform", J. Mar. Sci. Tech., 18(2), 229-246. https://doi.org/10.1007/s00773-012-0203-0
- Liu, K. and Ou, J. (2016), "A novel tuned heave plate system for heave motion suppression and energy harvesting on semisubmersible platforms", Sci. China Technol. Sci., 59(6), 897-912. https://doi.org/10.1007/s11431-016-6055-9
- Lu, Z., Zhang, J. and Wang, D. (2021), "Energy analysis of particle tuned mass damper systems with applications to MDOF structures under wind-induced excitation", J. Wind. Eng. Ind. Aerodyn., 218, 104766. https://doi.org/10.1016/j.jweia.2021.104766
- Ma, R., Bi, K. and Hao, H. (2018), "Mitigation of heave response of semi-submersible platform (SSP) using tuned heave plate inerter (THPI)", Eng. Struct., 177, 357-373. https://doi.org/10.1016/j.engstruct.2018.09.085
- Ma, R., Bi, K. and Hao, H. (2019), "A novel rotational inertia damper for heave motion suppression of semisubmersible platform in the shallow sea", Struct. Control Health Monitor., 26(7), e2368. https://doi.org/10.1002/stc.2368
- Ma, R., Bi, K. and Hao, H. (2020), "Heave motion mitigation of semi-submersible platform using inerter-based vibration isolation system (IVIS)", Eng. Struct., 219, 110833. https://doi.org/10.1016/j.engstruct.2020.110833
- Ma, R., Bi, K. and Hao, H. (2021a), "Inerter-based structural vibration control: A state-of-the-art review", Eng. Struct., 243, 112655. https://doi.org/10.1016/j.engstruct.2021.112655
- Ma, R., Bi, K. and Hao, H. (2021b), "A novel rotational inertia damper for amplifying fluid resistance: Experiment and mechanical model", Mech. Syst. Signal Process., 149, 107313. https://doi.org/10.1016/j.ymssp.2020.107313
- Ma, R., Bi, K. and Hao, H. (2021c), "Wave flume tests of a semisubmersible platform controlled by a novel rotational inertia damper", Ocean Eng., 238, 109718. https://doi.org/10.1016/j.oceaneng.2021.109718
- Marian, L. and Giaralis, A. (2014), "Optimal design of a novel tuned mass-damper-inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems", Probabilistic Eng. Mech., 38, 156-164. https://doi.org/10.1016/j.probengmech.2014.03.007
- Nagarajaiah, S. and Jung, H.J. (2014), "Smart tuned mass dampers: recent developments", Smart Struct. Syst., Int. J., 13(2), 173-176. https://doi.org/10.12989/sss.2014.13.2.173
- Nakamura, Y., Fukukita, A., Tamura, K., Yamazaki, I., Matsuoka, T., Hiramoto, K. and Sunakoda, K. (2014), "Seismic response control using electromagnetic inertial mass dampers", Earthq. Eng. Struct. Dyn., 43(4), 507-527. https://doi.org/10.1002/eqe.2355
- Newman, J.N. and Landweber, L. (1978), Marine hydrodynamics, MIT Press, Cambridge, UK.
- Perez, T. and Fossen, T.I. (2009), "A matlab toolbox for parametric identification of radiation-force models of ships and offshore structures", Model, Identif. Control, 30(1), 1-15. https://doi.org/10.4173/mic.2009.1.1
- Petrini, F., Giaralis, A. and Wang, Z. (2020), "Optimal tuned mass-damper-inerter (TMDI) design in wind-excited tall buildings for occupants' comfort serviceability performance and energy harvesting", Eng. Struct., 204, 109904. https://doi.org/10.1016/j.engstruct.2019.109904
- Pietrosanti, D., De Angelis, M. and Basili, M. (2017), "Optimal design and performance evaluation of systems with Tuned Mass Damper Inerter (TMDI)", Earthq. Eng. Struct. Dyn., 46(8), 1367-1388. https://doi.org/10.1002/eqe.2861
- Rong, K. and Lu, Z. (2021), "Performance of a gas-spring tuned mass damper under seismic excitation", Struct. Eng. Mech., Int. J., 80(2), 157-168. https://doi.org/10.12989/sem.2021.80.2.157
- Sarkar, S. and Fitzgerald, B. (2022), "Fluid inerter for optimal vibration control of floating offshore wind turbine towers", Eng. Struct., 266, 114558. https://doi.org/10.1016/j.engstruct.2022.114558
- Smith, M.C. (2002), "Synthesis of mechanical networks: the inerter", IEEE Trans. Automat. Contr., 47(10), 1648-1662. https://doi.org/10.1109/TAC.2002.803532
- Song, J., Bi, K., Xu, K., Han, Q. and Du, X. (2021), "Seismic responses of adjacent bridge structures coupled by tuned inerter damper", Eng. Struct., 243. https://doi.org/10.1016/j.engstruct.2021.112654
- Stewart, G.M. and Lackner, M.A. (2014), "The impact of passive tuned mass dampers and wind-wave misalignment on offshore wind turbine loads", Eng. Struct., 73, 54-61. https://doi.org/10.1016/j.engstruct.2014.04.045
- Sun, T. and Zhang, Z. (2022), "Optimal control and performance evaluation of an inerter-based point absorber wave energy converter", Ocean Eng., 259, 111883. https://doi.org/10.1016/j.oceaneng.2022.111883
- Sun, C., Nagarajaiah, S. and Dick, A. (2014), "Family of smart tuned mass dampers with variable frequency under harmonic excitations and ground motions: closed-form evaluation", Smart Struct. Syst., Int. J., 13(2), 319-341. https://doi.org/10.12989/sss.2014.13.2.319
- Tao, L. and Cai, S. (2004), "Heave motion suppression of a Spar with a heave plate", Ocean Eng., 31(5-6), 669-692. https://doi.org/10.1016/j.oceaneng.2003.05.005
- Wang, Y., Lynch, J.P. and Law, K.H. (2007), "A wireless structural health monitoring system with multithreaded sensing devices: design and validation", Struct. Infrastruct. Eng., 3(2), 103-120. https://doi.org/10.1080/15732470600590820
- Wang, Z., Gao, H., Wang, H. and Chen, Z. (2018), "Development of stiffness-adjustable tuned mass dampers for frequency retuning", Adv. Struct. Eng., 22(2), 473-485. https://doi.org/10.1177/1369433218791356
- Weber, F. and Maslanka, M. (2012), "Frequency and damping adaptation of a TMD with controlled MR damper", Smart Mater. Struct., 21(5). https://doi.org/10.1088/0964-1726/21/5/055011
- Xu, T., Liang, M., Li, C. and Yang, S. (2015), "Design and analysis of a shock absorber with variable moment of inertia for passive vehicle suspensions", J. Sound Vib., 355, 66-85. https://doi.org/10.1016/j.jsv.2015.05.035
- Xu, K., Bi, K., Ge, Y., Zhao, L., Han, Q. and Du, X. (2020), "Performance evaluation of inerter-based dampers for vortex- induced vibration control of long-span bridges: A comparative study", Struct. Control Health Monit., 27(6), e2529. https://doi.org/10.1002/stc.2529
- Zhang, Chen, Z., Hua, X., Huang, Z. and Niu, H. (2020), "Design and dynamic characterization of a large-scale eddy current damper with enhanced performance for vibration control", Mech. Syst. Signal Process., 145, 106879. https://doi.org/10.1016/j.ymssp.2020.106879
- Zhao, Z., Zhang, R., Jiang, Y. and Pan, C. (2019), "A tuned liquid inerter system for vibration control", Int. J. Mech. Sci., 164, 105171. https://doi.org/10.1016/j.ijmecsci.2019.105171
- Zhu, H., Li, Y., Shen, W. and Zhu, S. (2019), "Mechanical and energy-harvesting model for electromagnetic inertial mass dampers", Mech. Syst. Signal Process., 120, 203-220. https://doi.org/10.1016/j.ymssp.2018.10.023