DOI QR코드

DOI QR Code

Validation of model-based adaptive control method for real-time hybrid simulation

  • Xizhan Ning (College of Civil Engineering, Huaqiao University) ;
  • Wei Huang (College of Civil Engineering, Huaqiao University) ;
  • Guoshan Xu (School of Civil Engineering, Harbin Institute of Technology) ;
  • Zhen Wang (School of Civil Engineering and Architecture, Wuhan University of Technology) ;
  • Lichang Zheng (School of Civil Engineering, Harbin Institute of Technology)
  • 투고 : 2022.07.23
  • 심사 : 2023.03.21
  • 발행 : 2023.03.25

초록

Real-time hybrid simulation (RTHS) is an effective experimental technique for structural dynamic assessment. However, time delay causes displacement de-synchronization at the interface between the numerical and physical substructures, negatively affecting the accuracy and stability of RTHS. To this end, the authors have proposed a model-based adaptive control strategy with a Kalman filter (MAC-KF). In the proposed method, the time delay is mainly mitigated by a parameterized feedforward controller, which is designed using the discrete inverse model of the control plant and adjusted using the KF based on the displacement command and measurement. A feedback controller is employed to improve the robustness of the controller. The objective of this study is to further validate the power of dealing with a nonlinear control plant and to investigate the potential challenges of the proposed method through actual experiments. In particular, the effect of the order of the feedforward controller on tracking performance was numerically investigated using a nonlinear control plant; a series of actual RTHS of a frame structure equipped with a magnetorheological damper was performed using the proposed method. The findings reveal significant improvement in tracking accuracy, demonstrating that the proposed method effectively suppresses the time delay in RTHS. In addition, the parameters of the control plant are timely updated, indicating that it is feasible to estimate the control plant parameter by KF. The order of the feedforward controller has a limited effect on the control performance of the MAC-KF method, and the feedback controller is beneficial to promote the accuracy of RTHS.

키워드

과제정보

The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China [grant numbers 51908231 and 51978213], the Fundamental Research Funds for the Central Universities of Huaqiao University [grant number ZQN-912], Natural Science Foundation of Fujian Province [grant number 2020J01058], and the scientific research fund of Huaqiao University [grant number 18BS306].

참고문헌

  1. Al-Subaihawi, S., Ricles, J.M. and Quiel, S.E. (2022), "Online explicit model updating of nonlinear viscous dampers for real time hybrid simulation", Soil Dyn. Earthq. Eng., 154, 107108. https://doi.org/10.1016/j.soildyn.2021.107108
  2. Blakeborough, A., Williams, M.S., Darby, A.P. and Williams, D.M. (2001), "The development of real-time substructure testing", Philosoph. Transact. Royal Soc. London. Series A: Mathe. Phys. Eng. Sci., 359(1786), 1869-1891. https://doi.org/10.1098/rsta.2001.0877
  3. Carrion, J. and Spencer, B.F. (2008), "Real-time hybrid testing using model-based delay compensation", Smart Struct. Syst., Int. J., 4(6), 809-828. https://doi.org/10.12989/sss.2008.4.6.809
  4. Chae, Y., Kazemibidokhti, K. and Ricles, J.M. (2013), "Adaptive time series compensator for delay compensation of servohydraulic actuator systems for real-time hybrid simulation", Earthq. Eng. Struct. Dyn., 42(11), 1697-1715. https://doi.org/10.1002/eqe.2294
  5. Chen, P. and Chen, P. (2020), "Robust stability analysis of real-time hybrid simulation considering system uncertainty and delay compensation", Smart Struct. Syst., Int. J., 25(6), 719-732. https://doi.org/10.12989/sss.2020.25.6.719
  6. Chen, C. and Ricles, J.M. (2009), "Improving the inverse compensation method for real-time hybrid simulation through a dual compensation scheme", Earthq. Eng. Struct. Dyn., 38(10), 1237-1255. https://doi.org/10.1002/eqe.904
  7. Chen, P., Hsu, S., Zhong, Y. and Wang, S. (2019), "Real-time hybrid simulation of smart base-isolated raised floor systems for high-tech industry", Smart Struct. Syst., Int. J., 23(1), 91-106. https://doi.org/10.12989/sss.2019.23.1.091
  8. Chen, C., Yang, Y., Hou, H., Peng, C. and Xu, W. (2022), "Real-time hybrid simulation with multi-fidelity Co-Kriging for global response prediction under structural uncertainties", Earthq. Eng. Struct. Dyn., 51(11), 2591-2609. https://doi.org/10.1002/eqe.3690
  9. Condori, J., Maghareh, A., Orr, J., Li, H.W., Montoya, H., Dyke, S., Gill, C. and Prakash, A. (2020), "Exploiting parallel computing to control uncertain nonlinear systems in real-time", Experim. Techniq., 44(6), 735-749. https://doi.org/10.1007/s40799-020-00373-w
  10. Darby, A.P., Williams, M.S. and Blakeborough, A. (2002), "Stability and delay compensation for real-time substructure testing", J. Eng. Mech., 128(12), 1276-1284. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:12(1276)
  11. Fermandois, G.A. and Quiroz, M. (2021), "Adaptive Compensation with Magnetorheological Dampers in RTHS Testing", Proceedings of the 17th World Conference in Earthquake Engineering, Sendai, Japan, September.
  12. Galmez, C. and Fermandois, G. (2022), "Robust adaptive model-based compensator for the real-time hybrid simulation benchmark", Struct. Control Health Monitor., 29(7). https://doi.org/10.1002/stc.2962
  13. Gao, X., Chen, M., Chen, C. and Guo, T. (2022), "Real-time hybrid simulation with polynomial chaos NARX modeling for seismic response evaluation of structures subjected to stochastic ground motions", J. Struct. Eng., 148(9), 04022138. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003451
  14. Hakuno, M., Shidawara, M. and Hara, T. (1969), "Dynamic destructive test of a cantilever beam, controlled by an analogcomputer", Proceedings of the Japan Society of Civil Engineers, 1969(171), 1-9. https://doi.org/10.2208/jscej1969.1969.171_1
  15. Hayati, S. and Song, W. (2017), "An optimal discrete-time feedforward compensator for real-time hybrid simulation", Smart Struct. Syst., Int. J., 20(4), 483-498. https://doi.org/10.12989/sss.2017.20.4.483
  16. Horiuchi, T. and Konno, T. (2001), "A new method for compensating actuator delay in real-time hybrid experiments", Philosoph. Transact. Royal Soc. London. Series A: Mathe. Phys. Eng. Sci., 359(1786), 1893-1909. https://doi.org/10.1098/rsta.2001.0878
  17. Horiuchi, T., Inoue, M., Konno, T. and Namita, Y. (1999), "Real-time hybrid experimental system with actuator delay compensation and its application to a piping system with energy absorber", Earthq. Eng. Struct. Dyn., 28(10), 1121-1141. https://doi.org/10.1002/(SICI)1096-9845(199910)28:10<1121::AID-EQE858>3.0.CO;2-O
  18. Huang, L., Chen, C., Guo, T. and Chen, M.H. (2019), "Stability analysis of real-time hybrid simulation for time-varying actuator delay using the lyapunov-krasovskii functional approach", J. Eng. Mech., 145(1). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001550
  19. Li, H., Maghareh, A., Wilfredo Condori Uribe, J., Montoya, H., Dyke, S.J. and Xu, Z. (2022), "An adaptive sliding mode control system and its application to real-time hybrid simulation", Struct. Control Health Monitor., 29(1), e2851. https://doi.org/10.1002/stc.2851
  20. Maghareh, A., Dyke, S.J., Prakash, A. and Rhoads, J.F. (2014), "Establishing a stability switch criterion for effective implementation of real-time hybrid simulation", Smart Struct. Syst., Int. J., 14(6), 1221-1245. https://doi.org/10.12989/sss.2014.14.6.1221
  21. McCrum, D.P. and Williams, M.S. (2016), "An overview of seismic hybrid testing of engineering structures", Eng. Struct., 118, 240-261. http://dx.doi.org/10.1016/j.engstruct.2016.03.039
  22. Mirza Hessabi, R., Ashasi-Sorkhabi, A. and Mercan, O. (2016), "A new tracking error-based adaptive controller for servo-hydraulic actuator control", J. Vib. Control, 22(12), 2824-2840. https://doi.org/10.1177/1077546314548205
  23. Mukai, Y., Yokoyama, A., Fushihara, K., Fujinaga, T. and Fujitani, H. (2020), "Real-time hybrid test using two-individual actuators to evaluate seismic performance of RC frame model controlled by AMD", Front. Built Environ., 6, 145. https://doi.org/10.3389/fbuil.2020.00145
  24. Najafi, A. and Spencer, B.F. (2019), "Adaptive model reference control method for real-time hybrid simulation", Mech. Syst. Signal Process., 132, 183-193. https://doi.org/10.1016/j.ymssp.2019.06.023
  25. Nakashima, M., Kato, H. and Takaoka, E. (1992), "Development of real-time pseudo dynamic testing", Earthq. Eng. Struct. Dyn., 21(1), 79-92. https://doi.org/10.1002/eqe.4290210106
  26. Nakata, N. and Stehman, M. (2014), "Compensation techniques for experimental errors in real-time hybrid simulation using shake tables", Smart Struct. Syst., Int. J., 14(6), 1055-1079. https://doi.org/10.12989/sss.2014.14.6.1055
  27. Ning, X., Huang, W., Xu, G., Wang, Z. and Zheng, L. (2022), "A model-based adaptive control method for real-time hybrid simulation", Smart Struct. Syst., Int. J., 31(5). [In press]
  28. Ou, G., Ozdagli, A.I., Dyke, S.J. and Wu, B. (2015), "Robust integrated actuator control: experimental verification and real-time hybrid-simulation implementation", Earthq. Eng. Struct. Dyn., 44(3), 441-460. https://doi.org/10.1002/eqe.2479
  29. Palacio-Betancur, A. and Gutierrez Soto, M. (2019), "Adaptive tracking control for real-time hybrid simulation of structures subjected to seismic loading", Mech. Syst. Signal Process., 134, 106345. https://doi.org/10.1016/j.ymssp.2019.106345
  30. Peiris, L.D.H., Bartl, A., du Bois, J.L. and Plummer, A. (2020), "Passivity control with adaptive feed-forward filtering for real-time hybrid tests", IFAC J. Syst. Control, 12, 100081. https://doi.org/10.1016/j.ifacsc.2020.100081
  31. Phillips, B.M. and Spencer, B.F. (2013), "Model-based feedforward-feedback actuator control for real-time hybrid simulation", J. Struct. Eng., 139(7), 1205-1214. https://doi.org/10.1177/0959651820945515
  32. Silva, C.E., Gomez, D., Maghareh, A., Dyke, S.J. and Spencer, B.F. (2020), "Benchmark control problem for real-time hybrid simulation", Mech. Syst. Signal Process., 135, 106381. https://doi.org/10.1016/j.ymssp.2019.106381
  33. Simpson, T., Dertimanis, V.K. and Chatzi, E.N. (2020), "Towards data-driven real-time hybrid simulation: adaptive modeling of control plants", Front. Built Environ., 6, 570947. https://doi.org/10.3389/fbuil.2020.570947
  34. Strano, S. and Terzo, M. (2016), "Actuator dynamics compensation for real-time hybrid simulation: an adaptive approach by means of a nonlinear estimator", Nonlinear Dyn. 85(4), 2353-2368. https://doi.org/10.1007/s11071-016-2831-0
  35. Tsokanas, N., Wagg, D. and Stojadinovic, B. (2020), "Robust model predictive control for dynamics compensation in real-time hybrid simulation", Front. Built Environ., 6, 127. https://doi.org/10.3389/fbuil.2020.00127
  36. Tsokanas, N., Zhu, X., Abbiati, G., Stefano, M., Sudret, B. and Stojadinovic, B. (2021), "A global sensitivity analysis framework for hybrid simulation with stochastic substructures", Front. Built Environ., 7, 778716. https://doi.org/10.3389/fbuil.2021.778716
  37. Tsokanas, N., Pastorino, R. and Stojadinovic, B. (2022), "Adaptive model predictive control for actuation dynamics compensation in real-time hybrid simulation", Mech. Mach. Theory, 172, 104817. https://doi.org/10.1016/j.mechmachtheory.2022.104817
  38. Wang, Z., Xu, G., Li, Q. and Wu, B. (2020), "An adaptive delay compensation method based on a discrete system model for real-time hybrid simulation", Smart Struct. Syst., Int. J., 25(5), 569-580. https://doi.org/10.12989/sss.2020.25.5.569
  39. Weber, F. (2013), "Bouc-Wen model-based real-time force tracking scheme for MR dampers", Smart Mater. Struct., 22(4), 45012. https://doi.org/10.1088/0964-1726/22/4/045012
  40. Xu, W., Chen, C., Gao, X., Chen, M., Guo, T. and Peng, C. (2022), "Data-driven nonlinear autoregressive with external input model-based compensation for real-time testing", Struct. Control Health Monitor., 29(12), e3119. https://doi.org/10.1002/stc.3119
  41. Zhao, J., French, C., Shield, C. and Posbergh, T. (2003), "Considerations for the development of real-time dynamic testing using servo-hydraulic actuation", Earthq. Eng. Struct. Dyn., 32(11), 1773-1794. https://doi.org/10.1002/eqe.301
  42. Zhao, J., Shield, C., French, C. and Posbergh, T. (2005), "Nonlinear system modeling and velocity feedback compensation for effective force testing", J. Eng. Mech., 131(3), 244-253. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:3(244)