Acknowledgement
The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China [grant numbers 51908231 and 51978213], the Fundamental Research Funds for the Central Universities of Huaqiao University [grant number ZQN-912], Natural Science Foundation of Fujian Province [grant number 2020J01058], and the scientific research fund of Huaqiao University [grant number 18BS306].
References
- Al-Subaihawi, S., Ricles, J.M. and Quiel, S.E. (2022), "Online explicit model updating of nonlinear viscous dampers for real time hybrid simulation", Soil Dyn. Earthq. Eng., 154, 107108. https://doi.org/10.1016/j.soildyn.2021.107108
- Blakeborough, A., Williams, M.S., Darby, A.P. and Williams, D.M. (2001), "The development of real-time substructure testing", Philosoph. Transact. Royal Soc. London. Series A: Mathe. Phys. Eng. Sci., 359(1786), 1869-1891. https://doi.org/10.1098/rsta.2001.0877
- Carrion, J. and Spencer, B.F. (2008), "Real-time hybrid testing using model-based delay compensation", Smart Struct. Syst., Int. J., 4(6), 809-828. https://doi.org/10.12989/sss.2008.4.6.809
- Chae, Y., Kazemibidokhti, K. and Ricles, J.M. (2013), "Adaptive time series compensator for delay compensation of servohydraulic actuator systems for real-time hybrid simulation", Earthq. Eng. Struct. Dyn., 42(11), 1697-1715. https://doi.org/10.1002/eqe.2294
- Chen, P. and Chen, P. (2020), "Robust stability analysis of real-time hybrid simulation considering system uncertainty and delay compensation", Smart Struct. Syst., Int. J., 25(6), 719-732. https://doi.org/10.12989/sss.2020.25.6.719
- Chen, C. and Ricles, J.M. (2009), "Improving the inverse compensation method for real-time hybrid simulation through a dual compensation scheme", Earthq. Eng. Struct. Dyn., 38(10), 1237-1255. https://doi.org/10.1002/eqe.904
- Chen, P., Hsu, S., Zhong, Y. and Wang, S. (2019), "Real-time hybrid simulation of smart base-isolated raised floor systems for high-tech industry", Smart Struct. Syst., Int. J., 23(1), 91-106. https://doi.org/10.12989/sss.2019.23.1.091
- Chen, C., Yang, Y., Hou, H., Peng, C. and Xu, W. (2022), "Real-time hybrid simulation with multi-fidelity Co-Kriging for global response prediction under structural uncertainties", Earthq. Eng. Struct. Dyn., 51(11), 2591-2609. https://doi.org/10.1002/eqe.3690
- Condori, J., Maghareh, A., Orr, J., Li, H.W., Montoya, H., Dyke, S., Gill, C. and Prakash, A. (2020), "Exploiting parallel computing to control uncertain nonlinear systems in real-time", Experim. Techniq., 44(6), 735-749. https://doi.org/10.1007/s40799-020-00373-w
- Darby, A.P., Williams, M.S. and Blakeborough, A. (2002), "Stability and delay compensation for real-time substructure testing", J. Eng. Mech., 128(12), 1276-1284. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:12(1276)
- Fermandois, G.A. and Quiroz, M. (2021), "Adaptive Compensation with Magnetorheological Dampers in RTHS Testing", Proceedings of the 17th World Conference in Earthquake Engineering, Sendai, Japan, September.
- Galmez, C. and Fermandois, G. (2022), "Robust adaptive model-based compensator for the real-time hybrid simulation benchmark", Struct. Control Health Monitor., 29(7). https://doi.org/10.1002/stc.2962
- Gao, X., Chen, M., Chen, C. and Guo, T. (2022), "Real-time hybrid simulation with polynomial chaos NARX modeling for seismic response evaluation of structures subjected to stochastic ground motions", J. Struct. Eng., 148(9), 04022138. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003451
- Hakuno, M., Shidawara, M. and Hara, T. (1969), "Dynamic destructive test of a cantilever beam, controlled by an analogcomputer", Proceedings of the Japan Society of Civil Engineers, 1969(171), 1-9. https://doi.org/10.2208/jscej1969.1969.171_1
- Hayati, S. and Song, W. (2017), "An optimal discrete-time feedforward compensator for real-time hybrid simulation", Smart Struct. Syst., Int. J., 20(4), 483-498. https://doi.org/10.12989/sss.2017.20.4.483
- Horiuchi, T. and Konno, T. (2001), "A new method for compensating actuator delay in real-time hybrid experiments", Philosoph. Transact. Royal Soc. London. Series A: Mathe. Phys. Eng. Sci., 359(1786), 1893-1909. https://doi.org/10.1098/rsta.2001.0878
- Horiuchi, T., Inoue, M., Konno, T. and Namita, Y. (1999), "Real-time hybrid experimental system with actuator delay compensation and its application to a piping system with energy absorber", Earthq. Eng. Struct. Dyn., 28(10), 1121-1141. https://doi.org/10.1002/(SICI)1096-9845(199910)28:10<1121::AID-EQE858>3.0.CO;2-O
- Huang, L., Chen, C., Guo, T. and Chen, M.H. (2019), "Stability analysis of real-time hybrid simulation for time-varying actuator delay using the lyapunov-krasovskii functional approach", J. Eng. Mech., 145(1). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001550
- Li, H., Maghareh, A., Wilfredo Condori Uribe, J., Montoya, H., Dyke, S.J. and Xu, Z. (2022), "An adaptive sliding mode control system and its application to real-time hybrid simulation", Struct. Control Health Monitor., 29(1), e2851. https://doi.org/10.1002/stc.2851
- Maghareh, A., Dyke, S.J., Prakash, A. and Rhoads, J.F. (2014), "Establishing a stability switch criterion for effective implementation of real-time hybrid simulation", Smart Struct. Syst., Int. J., 14(6), 1221-1245. https://doi.org/10.12989/sss.2014.14.6.1221
- McCrum, D.P. and Williams, M.S. (2016), "An overview of seismic hybrid testing of engineering structures", Eng. Struct., 118, 240-261. http://dx.doi.org/10.1016/j.engstruct.2016.03.039
- Mirza Hessabi, R., Ashasi-Sorkhabi, A. and Mercan, O. (2016), "A new tracking error-based adaptive controller for servo-hydraulic actuator control", J. Vib. Control, 22(12), 2824-2840. https://doi.org/10.1177/1077546314548205
- Mukai, Y., Yokoyama, A., Fushihara, K., Fujinaga, T. and Fujitani, H. (2020), "Real-time hybrid test using two-individual actuators to evaluate seismic performance of RC frame model controlled by AMD", Front. Built Environ., 6, 145. https://doi.org/10.3389/fbuil.2020.00145
- Najafi, A. and Spencer, B.F. (2019), "Adaptive model reference control method for real-time hybrid simulation", Mech. Syst. Signal Process., 132, 183-193. https://doi.org/10.1016/j.ymssp.2019.06.023
- Nakashima, M., Kato, H. and Takaoka, E. (1992), "Development of real-time pseudo dynamic testing", Earthq. Eng. Struct. Dyn., 21(1), 79-92. https://doi.org/10.1002/eqe.4290210106
- Nakata, N. and Stehman, M. (2014), "Compensation techniques for experimental errors in real-time hybrid simulation using shake tables", Smart Struct. Syst., Int. J., 14(6), 1055-1079. https://doi.org/10.12989/sss.2014.14.6.1055
- Ning, X., Huang, W., Xu, G., Wang, Z. and Zheng, L. (2022), "A model-based adaptive control method for real-time hybrid simulation", Smart Struct. Syst., Int. J., 31(5). [In press]
- Ou, G., Ozdagli, A.I., Dyke, S.J. and Wu, B. (2015), "Robust integrated actuator control: experimental verification and real-time hybrid-simulation implementation", Earthq. Eng. Struct. Dyn., 44(3), 441-460. https://doi.org/10.1002/eqe.2479
- Palacio-Betancur, A. and Gutierrez Soto, M. (2019), "Adaptive tracking control for real-time hybrid simulation of structures subjected to seismic loading", Mech. Syst. Signal Process., 134, 106345. https://doi.org/10.1016/j.ymssp.2019.106345
- Peiris, L.D.H., Bartl, A., du Bois, J.L. and Plummer, A. (2020), "Passivity control with adaptive feed-forward filtering for real-time hybrid tests", IFAC J. Syst. Control, 12, 100081. https://doi.org/10.1016/j.ifacsc.2020.100081
- Phillips, B.M. and Spencer, B.F. (2013), "Model-based feedforward-feedback actuator control for real-time hybrid simulation", J. Struct. Eng., 139(7), 1205-1214. https://doi.org/10.1177/0959651820945515
- Silva, C.E., Gomez, D., Maghareh, A., Dyke, S.J. and Spencer, B.F. (2020), "Benchmark control problem for real-time hybrid simulation", Mech. Syst. Signal Process., 135, 106381. https://doi.org/10.1016/j.ymssp.2019.106381
- Simpson, T., Dertimanis, V.K. and Chatzi, E.N. (2020), "Towards data-driven real-time hybrid simulation: adaptive modeling of control plants", Front. Built Environ., 6, 570947. https://doi.org/10.3389/fbuil.2020.570947
- Strano, S. and Terzo, M. (2016), "Actuator dynamics compensation for real-time hybrid simulation: an adaptive approach by means of a nonlinear estimator", Nonlinear Dyn. 85(4), 2353-2368. https://doi.org/10.1007/s11071-016-2831-0
- Tsokanas, N., Wagg, D. and Stojadinovic, B. (2020), "Robust model predictive control for dynamics compensation in real-time hybrid simulation", Front. Built Environ., 6, 127. https://doi.org/10.3389/fbuil.2020.00127
- Tsokanas, N., Zhu, X., Abbiati, G., Stefano, M., Sudret, B. and Stojadinovic, B. (2021), "A global sensitivity analysis framework for hybrid simulation with stochastic substructures", Front. Built Environ., 7, 778716. https://doi.org/10.3389/fbuil.2021.778716
- Tsokanas, N., Pastorino, R. and Stojadinovic, B. (2022), "Adaptive model predictive control for actuation dynamics compensation in real-time hybrid simulation", Mech. Mach. Theory, 172, 104817. https://doi.org/10.1016/j.mechmachtheory.2022.104817
- Wang, Z., Xu, G., Li, Q. and Wu, B. (2020), "An adaptive delay compensation method based on a discrete system model for real-time hybrid simulation", Smart Struct. Syst., Int. J., 25(5), 569-580. https://doi.org/10.12989/sss.2020.25.5.569
- Weber, F. (2013), "Bouc-Wen model-based real-time force tracking scheme for MR dampers", Smart Mater. Struct., 22(4), 45012. https://doi.org/10.1088/0964-1726/22/4/045012
- Xu, W., Chen, C., Gao, X., Chen, M., Guo, T. and Peng, C. (2022), "Data-driven nonlinear autoregressive with external input model-based compensation for real-time testing", Struct. Control Health Monitor., 29(12), e3119. https://doi.org/10.1002/stc.3119
- Zhao, J., French, C., Shield, C. and Posbergh, T. (2003), "Considerations for the development of real-time dynamic testing using servo-hydraulic actuation", Earthq. Eng. Struct. Dyn., 32(11), 1773-1794. https://doi.org/10.1002/eqe.301
- Zhao, J., Shield, C., French, C. and Posbergh, T. (2005), "Nonlinear system modeling and velocity feedback compensation for effective force testing", J. Eng. Mech., 131(3), 244-253. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:3(244)