과제정보
The study was supported by National Key Research and Development Program of China under Grant No. 2021YFF0501003 and National Science Foundation of China under Grant Nos. U2139209 and 52078174.
참고문헌
- Akbarzadeh, V., Levesque, J.C., Gagne, C. and Parizeau, M. (2014), "Efficient sensor placement optimization using gradient descent and probabilistic coverage", Sensors, 14, 15525-15552. https://doi.org/10.3390/s140815525
- AlSaleh, R.J. and Clemente, F. (2020), "Combining GPS and accelerometers' records to capture torsional response of cylindrical tower", Smart Struct. Syst., Int. J., 25(1), 111-122. https://doi.org/10.12989/sss.2020.25.1.111
- Altunisik, A.C., Sevim, B., Sunca, F. and Okur, F.Y. (2021), "Optimal sensor placements for system identification of concrete arch dams", Adv. Concrete Constr., Int. J., 11(5), 397-407. https://doi.org/10.12989/acc.2021.11.5.397
- Borlenghi, P., Gentile, C. and Saisi, A. (2021), "Detecting and localizing anomalies on masonry towers from low-cost vibration monitoring", Smart Struct. Syst., Int. J., 27(2), 319-333. https://doi.org/10.12989/sss.2021.27.2.319
- Carne, T.G. and Dohrmann, C.R. (1994), A Modal Test Design Strategy for Model Correlation (No. SAND-94-2702C; CONF-950240-4), Sandia National Labs., Albuquerque, NM, USA.
- Chalioris, C.E., Voutetaki, M.E. and Liolios, A.A. (2020), "Structural health monitoring of seismically vulnerable RC frames under lateral cyclic loading", Earthq. Struct., Int. J., 19(1), 29-44. https://doi.org/10.12989/eas.2020.19.1.029
- Chang, C.C., Tsai, J., Lu, P.C. and Lai, C.A. (2020), "Accuracy Improvement of Autonomous Straight Take-off, Flying Forward, and Landing of a Drone with Deep Reinforcement Learning", Int. J. Computat. Intell. Syst., 13(1), 914-919. https://doi.org/10.2991/ijcis.d.200615.002
- Clegg, A., Erickson, Z., Grady, P., Turk, G., Kemp, C.C. and Liu, C.K. (2020), "Learning to collaborate from simulation for robot-assisted dressing", IEEE Robot. Automat. Lett., 5(2), 2746-2753. https://doi.org/10.1109/LRA.2020.2972852
- Ding, Z., Li, J. and Hao, H. (2020), "Structural damage identification by sparse deep belief network using uncertain and limited data", Struct. Control Health Monitor., 27(5), e2522. https://doi.org/10.1002/stc.2522
- Ewins, D.J. (1986), "Modal Testing: Theory and Practice", J. Vib. Acoust. Stress Reliabil. Des., 108(1), 109-110. https://doi.org/10.1115/1.3269294
- He, C., Xing, J., Li, J., Yang, Q., Wang, R. and Zhang, X. (2015), "A new optimal sensor placement strategy based on modified modal assurance criterion and improved adaptive genetic algorithm for structural health monitoring", Mathe. Probl. Eng., 11, 1-10. https://doi.org/10.1155/2015/626342
- Hosseini-Toudeshky, H. and Amjad, F.A. (2021), "Sensor placement optimization for guided wave-based structural health monitoring", Struct. Monitor. Maint., Int. J., 8(2), 125-150. https://doi.org/10.12989/SMM.2021.8.2.125
- Hou, R.R., Xia, Y. and Zhou, X.Q. (2019), "Genetic algorithm based optimal sensor placement for L1-regularized damage detection", Struct. Control Health Monitor., 26(1), e2274. https://doi.org/10.1002/stc.2274
- Huang, Y., Beck, J.L. and Li, H. (2017), "Bayesian system identification based on hierarchical sparse Bayesian learning and Gibbs sampling with application to structural damage assessment", Comput. Meth. Appl. Mech. Eng., 318 (2017), 382-411. https://doi.org/10.1016/j.cma.2017.01.030
- Huang, Y., Zhang, H., Li, H. and Wu, S. (2021), "Recovering compressed images for automatic crack segmentation using generative models", Mech. Syst. Signal Process., 146. https://doi.org/107061. 10.1016/j.ymssp.2020.107061
- Kalnoor, G. and Subrahmanyam, G. (2020), "A review on applications of Markov decision process model and energy efficiency in wireless sensor networks", Procedia Comput. Sci., 167, 2308-2317. https://doi.org/10.1016/j.procs.2020.03.283
- Kaloop, M.R., Elsharawy, M., Abdelwahed, B., Hu, J.W. and Kim, D. (2020), "Performance assessment of bridges using short-period structural health monitoring system: Sungsu bridge case study", Smart Struct. Syst., Int. J., 26(5), 667-680. https://doi.org/10.12989/sss.2020.26.5.667
- Kammer, D.C. (1991), "Sensor placement for on-orbit model identification and correlation of large space structures", J. Guid. Control Dyn., 14(2), 251-259. https://doi.org/10.2514/3.20635
- Krishna, A., Bartake, K., Niu, C., Wang, G., Lai, Y., Jia, X. and Mueller, K. (2021), "Image synthesis for data augmentation in medical ct using deep reinforcement learning", arXiv preprint arXiv:2103.10493. 2103.10493
- Lin, K., Gong, L., Li, X., Sun, T., Chen, B., Liu, C., Zhang, Z., Pu, J. and Zhang, J. (2020), "Exploration-efficient deep reinforcement learning with demonstration guidance for robot control", arXiv preprint arXiv:2002.12089.
- Liu, W., Gao, W.C., Sun, Y. and Xu, M.J. (2008), "Optimal sensor placement for spatial lattice structure based on genetic algorithms", J. Sound Vib., 317, 75-189. https://doi.org/10.1016/j.jsv.2008.03.026
- Liu, C.Y., Teng, J. and Zhen, P. (2020), "Optimal sensor placement for bridge damage detection using deflection influence line", Smart Struct. Syst., Int. J., 25(2), 169-181. https://doi.org/10.12989/sss.2020.25.2.169
- Lydon, D., Taylor, S.E., Lydon, M., del Rincon, J.M. and Hester, D. (2019), "Development and testing of a composite system for bridge health monitoring utilising computer vision and deep learning", Smart Struct. Syst., Int. J., 24(6), 723-732. https://doi.org/10.12989/sss.2019.24.6.723
- Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D. and Riedmiller, M. (2013), "Playing atari with deep reinforcement learning", arXiv preprint, arXiv:1312.5602
- Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G. and Petersen, S. (2015), "Human-level control through deep reinforcement learning", Nature, 518(7540), 529-533. https://doi.org/10.1038/nature14236
- Oh, J., Guo, X., Lee, H., Lewis, R.L. and Singh, S. (2015), "Action-conditional video prediction using deep networks in Atari games", Adv. Neural Inform. Process. Syst., 28.
- Qin, X., Zhan, P., Yu, C., Zhang, Q. and Sun, Y. (2021), "Health monitoring sensor placement optimization based on initial sensor layout using improved partheno-genetic algorithm", Adv. Struct. Eng., 24(2), 252-265. https://doi.org/10.1177/1369433220947198
- Quqa, S., Giordano, P.F., Limongelli, M.P., Landi, L. and Diotallevi, P.P. (2021), "Clump interpolation error for the identification of damage using decentralized sensor networks", Smart Struct. Syst., Int. J., 27(2), 351-363. https://doi.org/10.12989/sss.2021.27.2.351
- Rosafalco, L., Manzoni, A., Mariani, S. and Corigliano, A. (2020), "Fully convolutional networks for structural health monitoring through multivariate time series classification", Adv. Model. Simul. Eng. Sci., 7(1), 1-31. https://doi.org/10.1186/s40323-020-00174-1
- Shah, P. and Udwadia, F.E. (1978), "A methodology for optimal sensor locations for identification of dynamic systems", J. Appl. Mech. Transact. ASME, 45(1), 188-196. https://doi.org/10.1115/1.3424225
- Singh, Y., Sharma, S., Sutton, R. and Hatton, D. (2017), "Path planning of an autonomous surface vehicle based on artificial potential fields in a real time marine environment", Proceedings of the 16 International Conference on Computer and IT Applications in the Maritime Industries, May.
- Sun, H. and Buyukozturk, O. (2015), "Optimal sensor placement in structural health monitoring using discrete optimization", Smart Mater. Struct., 24(12), 125. 10.1088/0964-1726/24/12/125034
- Sutton, R.S. and Barto, A.G. (1998), "Reinforcement Learning: An Introduction", IEEE Transact. Neural Networks.
- Van Hasselt, H., Guez, A. and Silver, D. (2016), "Deep reinforcement learning with double q-learning", Proceedings of the AAAI Conference on Artificial Intelligence.
- Wang, Z., Li, H.X. and Chen, C.L. (2019), "Reinforcement learning-based optimal sensor placement for spatiotemporal modeling", IEEE Transact. Cybernet., 50(6), 2861-2871. https://doi.org/10.1109/TCYB.2019.2901897
- Wang, R., Li, J., An, S., Hao, H., Liu, W. and Li, L. (2021), "Densely connected convolutional networks for vibration based structural damage identification", Eng. Struct., 245, 112871. https://doi.org/10.1016/j.engstruct.2021.112871
- Wei, S.Y., Jin, X.W. and Li, H. (2019), "General solutions for nonlinear differential equations: a rule-based self-learning approach using deep reinforcement learning", Computat. Mech., 64(5), 1361-1374. https://doi.org/10.1007/s00466-019-01715-1
- Wu, W.H., Jhou, J.W., Chen, C.C. and Lai, G. (2019), "A novel recursive stochastic subspace identification algorithm with its application in long-term structural health monitoring of office buildings", Smart Struct. Syst., Int. J., 24(4), 459-474. https://doi.org/10.12989/sss.2019.24.4.459
- Xu, C., Zhang, D., Chong, J., Chen, B. and Li, S. (2021), "Synthesis of gadolinium-enhanced liver tumors on nonenhanced liver MR images using pixel-level graph reinforcement learning", Med. Image Anal., 69, p. 101976. https://doi.org/10.1016/j.media.2021.101976
- Yang, C. and Lu, Z.X. (2017), "An interval effective independence method for optimal sensor placement based on non-probabilistic approach", Inst. Solid Mech., 60(2), 186-198. https://doi.org/10.1007/s11431-016-0526-9
- Yi, T.H., Li, H.N. and Zhang, X.D. (2015), "Health monitoring sensor placement optimization for Canton Tower using immune monkey algorithm", Struct. Control Health Monitor., 22(1), 123-138. https://doi.org/10.1002/stc.1664
- Yin, T., Yuen, K.V., Lam, H.F. and Zhu, H. (2017), "Entropy-based optimal sensor placement for model identification of periodic structures endowed with bolted joints", Comput.-Aided Civil Infrastr. Eng., 32(12), 1007-1024. https://doi.org/10.1111/mice.12309
- Yuen, K.V., Beck, J.L. and Katafygiotis, L.S. (2006), "Efficient model updating and health monitoring methodology using incomplete modal data without mode matching", Struct. Control Health Monitor., 13, 91-107. https://doi.org/10.1002/stc.144
- Yurtsever, E., Capito, L., Redmill, K. and Ozgune, U. (2020), "Information-driven distributed maximum likelihood estimation based on Gauss-Newton method in wireless sensor networks", In: 2020 IEEE Intelligent Vehicles Symposium (IV), pp. 1311-1316. https://doi.org/10.1109/IV47402.2020.9304735
- Zhao, T. and Nehorai, A. (2007), "Information-driven distributed maximum likelihood estimation based on Gauss-Newton method in wireless sensor networks", IEEE Transact. Signal Process., 55(9), 4669-4682. https://doi.org/10.1109/TSP.2007.896267
- Zhao, T., Wang, P. and Li, S. (2019), "Traffic signal control with deep reinforcement learning", Proceedings of 2019 International Conference on Intelligent Computing, Automation and Systems (ICICAS), Chongqing, China, December. https://doi.org/10.1109/ICICAS48597.2019.00164