DOI QR코드

DOI QR Code

Structural damage identification with output-only measurements using modified Jaya algorithm and Tikhonov regularization method

  • Guangcai Zhang (Key Laboratory of concrete and prestressed concrete structure of Ministry of Education, Southeast University) ;
  • Chunfeng Wan (Key Laboratory of concrete and prestressed concrete structure of Ministry of Education, Southeast University) ;
  • Liyu Xie (Research Institute of Structural Engineering and Disaster Reduction, College of Civil Engineering, Tongji University) ;
  • Songtao Xue (Research Institute of Structural Engineering and Disaster Reduction, College of Civil Engineering, Tongji University)
  • 투고 : 2022.10.20
  • 심사 : 2023.01.03
  • 발행 : 2023.03.25

초록

The absence of excitation measurements may pose a big challenge in the application of structural damage identification owing to the fact that substantial effort is needed to reconstruct or identify unknown input force. To address this issue, in this paper, an iterative strategy, a synergy of Tikhonov regularization method for force identification and modified Jaya algorithm (M-Jaya) for stiffness parameter identification, is developed for damage identification with partial output-only responses. On the one hand, the probabilistic clustering learning technique and nonlinear updating equation are introduced to improve the performance of standard Jaya algorithm. On the other hand, to deal with the difficulty of selection the appropriate regularization parameters in traditional Tikhonov regularization, an improved L-curve method based on B-spline interpolation function is presented. The applicability and effectiveness of the iterative strategy for simultaneous identification of structural damages and unknown input excitation is validated by numerical simulation on a 21-bar truss structure subjected to ambient excitation under noise free and contaminated measurements cases, as well as a series of experimental tests on a five-floor steel frame structure excited by sinusoidal force. The results from these numerical and experimental studies demonstrate that the proposed identification strategy can accurately and effectively identify damage locations and extents without the requirement of force measurements. The proposed M-Jaya algorithm provides more satisfactory performance than genetic algorithm, Gaussian bare-bones artificial bee colony and Jaya algorithm.

키워드

과제정보

This work was supported by the Key Program of Intergovernmental International Scientific and Technological Innovation Cooperation (2021YFE0112200), the Japan Society for Promotion of Science (Kakenhi No. 18K04438), and the Tohoku Institute of Technology research Grant. These financial supports are sincerely appreciated. Besides, the author would like to thank the anonymous reviewers for their detailed and fruitful remarks.

참고문헌

  1. Aslay, S.E. and Dede, T. (2022), "3D cost optimization of 3 story RC constructional building using Jaya algorithm", Structures, 40, 803-811. https://doi.org/10.1016/j.istruc.2022.04.055
  2. Aydin, Z. (2022), "Size, layout and tendon profile optimization of prestressed steel trusses using Jaya algorithm", Structures, 40, 284-294. https://doi.org/10.1016/j.istruc.2022.04.014
  3. Caravani, P., Watson, M.L. and Thomson, W.T. (1977), "Recursive least-squares time domain identification of structural parameters", J. Appl. Mech., 44(1), 135-140. https://doi.org/10.1115/1.3423979
  4. Daneshvar, M.H., Saffarian, M., Jahangir, H. and Sarmadi, H. (2022), "Damage identification of structural systems by modal strain energy and an optimization-based iterative regularization method", Eng. Comput., 1-21. https://doi.org/10.1007/s00366-021-01567-5
  5. Das, S. and Dhang, N. (2020), "Structural damage identification of truss structures using self-controlled multi-stage particle swarm optimization", Smart Struct. Syst., Int. J., 25(3), 345-368. https://doi.org/10.12989/sss.2020.25.3.345
  6. Ding, Z.H., Li, J., Hao, H. and Lu, Z.R. (2019), "Structural damage identification with uncertain modelling error and measurement noise by clustering based tree seeds algorithm", Eng. Struct., 185, 301-314. https://doi.org/10.1016/j.engstruct.2019.01.118
  7. Ding, Z.H., Li, J. and Hao, H. (2020), "Non-probabilistic method to consider uncertainties in structural damage identification based on Hybrid Jaya and Tree Seeds Algorithm", Eng. Struct., 220, 110925. https://doi.org/10.1016/j.engstruct.2020.110925
  8. Ding, Z.H., Zhang, Y.X., Lu, Z.R. and Xia, Y. (2022), "Parameter identification of airfoil systems using an elite-based clustering Jaya algorithm and incremental vibration responses", Struct. Multidiscipl. Optimiz., 65(7), 1-18. https://doi.org/10.1007/s00158-022-03308-8
  9. Dinh-Cong, D., Nguyen-Thoi, T. and Nguyen, D.T. (2021), "A two-stage multi-damage detection approach for composite structures using MKECR-Tikhonov regularization iterative method and model updating procedure", Appl. Mathe. Modell., 90, 114-130. https://doi.org/10.1016/j.apm.2020.09.002
  10. Doebling, S.W., Farrar, C.R. and Prime, M.B. (1998), "A summary review of vibration-based damage identification methods", Shock Vib. Digest, 30(2), 91-105. https://doi.org/10.1177/058310249803000201
  11. Esfandiari, A., Nabiyan, M.S. and Rofooei, F.R. (2020), "Structural damage detection using principal component analysis of frequency response function data", Struct. Control Health Monitor., 27(7), e2550. https://doi.org/10.1002/stc.2550
  12. Farrar, C.R. and Doebling, S.W. (1997), "Lessons learned from applications of vibration based damage identification methods to large bridge structure", Proceedings of the International Workshop on Structural Health Monitoring, Stanford University, Stanford, CA, USA, pp. 351-370.
  13. Feng, D.M. and Feng, M.Q. (2017), "Identification of structural stiffness and excitation forces in time domain using noncontact vision-based displacement measurement", J. Sound Vib., 406, 15-28. https://doi.org/10.1016/j.jsv.2017.06.008
  14. Feng, D.M, Sun, H. and Feng, M.Q. (2015), "Simultaneous identification of bridge structural parameters and vehicle loads", Comput. Struct., 157, 76-88. https://doi.org/10.1016/j.compstruc.2015.05.017
  15. Feng, K., Gonzalez, A. and Casero, M. (2021), "A kNN algorithm for locating and quantifying stiffness loss in a bridge from the forced vibration due to a truck crossing at low speed", Mech. Syst. Signal Process., 154, 107599. https://doi.org/10.1016/j.ymssp.2020.107599
  16. Gao, F. and Lu, Y. (2006), "A Kalman-filter based time-domain analysis for structural damage diagnosis with noisy signals", J. Sound Vib., 297(3-5), 916-930. https://doi.org/10.1016/j.jsv.2006.05.007
  17. Hansen, P.C. and O'Leary, D.P. (1993), "The use of the L-curve in the regularization of discrete ill-posed problems", SIAM J. Scientif. Comput., 14(6), 1487-1503. https://doi.org/10.1137/0914086
  18. Jayalakshmi, V. and Rao, A. (2017), "Simultaneous identification of damage and input dynamic force on the structure for structural health monitoring", Struct. Multidiscipl. Optimiz., 55(6), 2211-2238. https://doi.org/10.1007/s00158-016-1637-5
  19. Jayalakshmi, V., Lakshmi, K. and Mohan Rao, A.R. (2018), "Dynamic force reconstruction techniques from incomplete measurements", J. Vib. Control, 24(22), 5321-5344. https://doi.org/10.1177/1077546317752709
  20. Kalhori, H., Alamdari, M.M. and Ye, L. (2018), "Automated algorithm for impact force identification using cosine similarity searching", Measurement, 122, 648-657. https://doi.org/10.1016/j.measurement.2018.01.016
  21. Kaveh, A. and Dadras, A. (2018), "Structural damage identification using an enhanced thermal exchange optimization algorithm", Eng. Optimiz., 50(3), 430-451. https://doi.org/10.1080/0305215X.2017.1318872
  22. Kaveh, A. and Maniat, M. (2015), "Damage detection based on MCSS and PSO using modal data", Smart Struct. Syst., Int. J., 15(5), 1253-1270. https://doi.org/10.12989/sss.2015.15.5.1253
  23. Kaveh, A. and Zolghadr, A. (2015), "An improved CSS for damage detection of truss structures using changes in natural frequencies and mode shapes", Adv. Eng. Software, 80, 93-100. https://doi.org/10.1016/j.advengsoft.2014.09.010
  24. Kaveh, A. and Zolghadr, A. (2017), "Cyclical parthenogenesis algorithm for guided modal strain energy based structural damage detection", Appl. Soft Comput., 57, 250-264. https://doi.org/10.1016/j.asoc.2017.04.010
  25. Kaveh, A., Vaez, S.R.H., Hosseini, P. and Fallah, N. (2016), "Detection of damage in truss structures using Simplified Dolphin Echolocation algorithm based on modal data", Smart Struct. Syst., Int. J., 18(5), 983-1004. https://doi.org/10.12989/sss.2016.18.5.983
  26. Kaveh, A., Hosseini, S.M. and Zaerreza, A. (2021a), "Boundary strategy for optimization-based structural damage detection problem using metaheuristic algorithms", Periodica Polytech. Civil Eng., 65(1), 150-167. https://doi.org/10.3311/PPci.16924
  27. Kaveh, A., Hosseini, S.M. and Zaerreza, A. (2021b), "Improved Shuffled Jaya algorithm for sizing optimization of skeletal structures with discrete variables", Structures, 29, 107-128. https://doi.org/10.1016/j.istruc.2020.11.008
  28. Lei, Y., Xia, D.D., Chen, F. and Deng, Y.M. (2018), "Synthesis of cross-correlation functions of partial responses and the extended Kalman filter approach for structural damage detection under ambient excitations", Int. J. Struct. Stabil. Dyn., 18(08), 1840003. https://doi.org/10.1142/S0219455418400035
  29. Li, J., Hao, H. and Lo, J.V. (2015), "Structural damage identification with power spectral density transmissibility: numerical and experimental studies", Smart Struct. Syst., Int. J., 15(1), 15-40. https://doi.org/10.12989/sss.2015.15.1.015
  30. Liu, L.J., Su, Y., Zhu, J.J. and Lei, Y. (2016), "Data fusion based EKF-UI for real-time simultaneous identification of structural systems and unknown external inputs", Measurement, 88, 456-467. https://doi.org/10.1016/j.measurement.2016.02.002
  31. Lu, Z.R., Huang, M.S. and Liu, J.K. (2011), "State-space formulation for simultaneous identification of both damage and input force from response sensitivity", Smart Struct. Syst., Int. J., 8(2), 157-172. https://doi.org/10.12989/sss.2011.8.2.157
  32. Ni, P.H., Ye, X.W. and Ding, Y. (2022), "An output-only structural condition assessment method for civil structures by the stochastic gradient descent method", Struct. Control Health Monitor., e3132. https://doi.org/10.1002/stc.3132
  33. Perry, M.J. and Koh, C.G. (2008), "Output-only structural identification in time domain: numerical and experimental studies", Earthq. Eng. Struct. Dyn., 37(4), 517-533. https://doi.org/10.1002/eqe.769
  34. Rao, R. (2016), "Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems", Int. J. Indust. Eng. Computat, 7(1), 19-34. https://doi.org/10.5267/j.ijiec.2015.8.004
  35. Seyedpoor, S.M., Norouzi, E. and Ghasemi, S. (2018), "Structural damage detection using a multi-stage improved differential evolution algorithm (Numerical and experimental)", Smart Struct. Syst., Int. J., 21(2), 235-248. https://doi.org/10.12989/sss.2018.21.2.235
  36. Silva, M., Santos, A., Figueiredo, E., Santos, R., Sales, C. and Costa, J. (2016), "A novel unsupervised approach based on a genetic algorithm for structural damage detection in bridges", Eng. Applicat. Artif. Intell., 52, 168-180. https://doi.org/10.1016/j.engappai.2016.03.002
  37. Sun, H., Lus, H. and Betti, R. (2013), "Identification of structural models using a modified Artificial Bee Colony algorithm", Comput. Struct., 116, 59-74. https://doi.org/10.1016/j.compstruc.2012.10.017
  38. Sun, X.S., Liu, J., Han, X., Jiang, C. and Chen, R. (2014), "A new improved regularization method for dynamic load identification", Inverse Probl. Sci. Eng., 22(7), 1062-1076. https://doi.org/10.1080/17415977.2013.854353
  39. Sun, H., Feng, D.M., Liu, Y. and Feng, M.Q. (2015), "Statistical regularization for identification of structural parameters and external loadings using state space models", Comput.-Aided Civil Infrastr. Eng., 30(11), 843-858. https://doi.org/10.1111/mice.12169
  40. Tang, Z.H., Zhang, Z.F., Zan, M., Xu, Z.M. and Xu, E.Y. (2022), "The determination of the regularization parameter based on signal-to-noise ratio in load identification", J. Vib. Control, 10775463221122087. https://doi.org/10.1177/10775463221122087
  41. Wang, X., Hu, N., Fukunaga, H. and Yao, Z.H. (2001), "Structural damage identification using static test data and changes in frequencies", Eng. Struct., 23(6), 610-621. https://doi.org/10.1016/S0141-0296(00)00086-9
  42. Wang, N.J., Ren, C.P. and Liu, C.S. (2018), "A novel fractional Tikhonov regularization coupled with an improved super-memory gradient method and application to dynamic force identification problems", Mathe. Probl. Eng., 2018. https://doi.org/10.1155/2018/4790950
  43. Wang, X.J., Zhang, G.C., Wang, X.M. and Ni, P.H. (2020), "Output-only structural parameter identification with evolutionary algorithms and correlation functions", Smart Mater. Struct., 29(3), 035018. https://doi.org/10.1088/1361-665X/ab6ce9
  44. Xu, B., He, J., Rovekamp, R. and Dyke, S.J. (2012), "Structural parameters and dynamic loading identification from incomplete measurements: approach and validation", Mech. Syst. Signal Process., 28, 244-257. https://doi.org/10.1016/j.ymssp.2011.07.008
  45. Xu, Y.B., Pei, Y. and Dong, F. (2016), "An adaptive Tikhonov regularization parameter choice method for electrical resistance tomography", Flow Measure. Instrument., 50, 1-12. https://doi.org/10.1016/j.flowmeasinst.2016.05.004
  46. Xue, S.T., Tang, H.S. and Xie, Q. (2009), "Structural damage detection using auxiliary particle filtering method", Struct. Health Monitor., 8(2), 101-112. https://doi.org/10.1177/1475921708094794.
  47. Yan, W.J. and Ren, W.X. (2014), "Closed-form modal flexibility sensitivity and its application to structural damage detection without modal truncation error", J. Vib. Control, 20(12), 1816-1830. https://doi.org/10.1177/1077546313476724
  48. Yang, H. and Xu, X.Y. (2019), "Multi-sensor technology for B-spline modelling and deformation analysis of composite structures", Compos. Struct., 224, 111000. https://doi.org/10.1016/j.compstruct.2019.111000
  49. Yi, T.H., Li, H.N. and Zhang, X.D. (2015), "Sensor placement optimization in structural health monitoring using distributed monkey algorithm", Smart Struct. Syst., Int. J., 15(1), 191-207. https://doi.org/10.12989/sss.2015.15.1.191
  50. Yi, T.H., Wen, K.F. and Li, H.N. (2016), "A new swarm intelligent optimization algorithm: Pigeon Colony Algorithm (PCA)", Smart Struct. Syst., Int. J., 18(3), 425-448. https://doi.org/10.12989/sss.2016.18.3.425
  51. Yu, K.J., Liang, J.J., Qu, B.Y., Chen, X. and Wang, H.S. (2017), "Parameters identification of photovoltaic models using an improved JAYA optimization algorithm", Energy Convers. Manage., 150, 742-753. https://doi.org/10.1016/j.enconman.2017.08.063
  52. Zhang, Z., Koh, C.G. and Duan, W.H. (2010), "Uniformly sampled genetic algorithm with gradient search for structural identification-Part I: Global search", Comput. Struct., 88(15-16), 949-962. https://doi.org/10.1016/j.compstruc.2010.05.001
  53. Zhang, G.C., Hou, J.L., Wan, C.F., Xie, L.Y. and Xue, S.T. (2022a), "Structural system identification and damage detection using adaptive hybrid Jaya and differential evolution algorithm with mutation pool strategy", Structures, 46, 1313-1326. https://doi.org/10.1016/j.istruc.2022.10.130
  54. Zhang, G.C., Wan, C.F., Xiong, X.B., Xie, L.Y., Noori, M. and Xue, S.T. (2022b), "Output-only structural damage identification using hybrid Jaya and differential evolution algorithm with reference-free correlation functions", Measurement, 199, 111591. https://doi.org/10.1016/j.measurement.2022.111591
  55. Zhao, H.T., Li, X.W. and Chen, J. (2021), "Distributed load identification for uncertain structure based on LHS-GA and improved L-curve method", Int. J. Computat. Methods, 18(01), 2050022. https://doi.org/10.1142/S021987622050022X
  56. Zhou, X.Y., Wu, Z.J., Wang, H. and Rahnamayan, S. (2016), "Gaussian bare-bones artificial bee colony algorithm", Soft Comput., 20(3), 907-924. https://doi.org/10.1007/s00500-014-1549-5
  57. Zhou, H.Y., Zhang, G.C., Wang, X.J., Ni, P.H. and Zhang, J. (2021), "Structural identification using improved butterfly optimization algorithm with adaptive sampling test and search space reduction method", Structures, 33, 2121-2139. https://doi.org/10.1016/j.istruc.2021.05.043
  58. Zitar, R.A., Al-Betar, M.A., Awadallah, M.A., Doush, L.A. and Assaleh, K. (2021), "An intensive and comprehensive overview of JAYA algorithm, its versions and applications", Arch. Computat. Methods Eng., 29, 763-792. https://doi.org/10.1007/s11831-021-09585-8