Acknowledgement
This work was supported by the "Pioneer" and "Leading Goose" R&D Program of Zhejiang (Project Number: 2022C03009) and the National Natural Science Foundation of China (Grant No. 52178111 and 51890902).
References
- Bai, J.L., He, J., Li, C., Jin, S.S. and Yang, H. (2022), "Experimental investigation on the seismic performance of a novel damage-control replaceable RC beam-to-column joint", Eng. Struct., 267, 114692. https://doi.org/10.1016/j.engstruct.2022.114692
- Bian, J. and Jing, X.J. (2019), "Superior nonlinear passive damping characteristics of the bio-inspired limb-like or X-shaped structure", Mech. Syst. Signal Process., 125, 21-51. https://doi.org/10.1016/j.ymssp.2018.02.014
- Bian, J. and Jing, X.J. (2020), "Analysis and design of a novel and compact X-structured vibration isolation mount (X-Mount) with wider quasi-zero-stiffness range", Nonlinear Dyn., 101(4), 2195-2222. https://doi.org/10.1007/s11071-020-05878-y
- Bian, J. and Jing, X.J. (2021), "A nonlinear X-shaped structure based tuned mass damper with multi-variable optimization (X-absorber)", Commun. Nonlinear Sci. Numer. Simul., 99, 105829. https://doi.org/10.1016/j.cnsns.2021.105829
- Bian, J., Zhou, X.H., Ke, K., Yam, M.C.H. and Wang, Y.H. (2022), "Seismic resilient steel substation with BI-TMDI: A theoretical model for optimal design", J. Constr. Steel Res., 192, 107233. https://doi.org/10.1016/j.jcsr.2022.107233
- Carrella, A., Brennan, M.J., Waters, T.P. and Lopes, J.V. (2012), "Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness", Int. J. Mech. Sci., 55(1), 22-29. https://doi.org/10.1016/j.ijmecsci.2011.11.012
- Chai, Y.Y., Jing, X.J. and Guo, Y.Q. (2022), "A compact X-shaped mechanism based 3-DOF anti-vibration unit with enhanced tunable QZS property", Mech. Syst. Signal Process., 168, 108651. https://doi.org/10.1016/j.ymssp.2021.108651
- Chen, H. and Bai, J.L. (2021), "Seismic performance evaluation of buckling-restrained braced RC frames considering stiffness and strength requirements and low-cycle fatigue behaviors", Eng. Struct., 239, 112359. https://doi.org/10.1016/j.engstruct.2021.112359
- Chen, Y. and Ke, K. (2019), "Seismic performance of high-strength-steel frame equipped with sacrificial beams of non-compact sections in energy dissipation bays", Thin-Wall. Struct., 139, 169-185. https://doi.org/10.1016/j.tws.2019.02.035
- Chen, R.Z., Li, X.P., Yang, Z.M., Xu, J.C. and Yang, H.X. (2021), "A variable positive-negative stiffness joint with low frequency vibration isolation performance", Measurement, 185, 110046. https://doi.org/10.1016/j.measurement.2021.110046
- Deng, T.C., Wen, G.L., Ding, H., Lu, Z.Q. and Chen, L.Q. (2020), "A bio-inspired isolator based on characteristics of quasi-zero stiffness and bird multi-layer neck", Mech. Syst. Signal Process., 145, 106967. https://doi.org/10.1016/j.ymssp.2020.106967
- Ding, H. and Chen, L.Q. (2019), "Nonlinear vibration of a slightly curved beam with quasi-zero-stiffness isolators", Nonlinear Dyn., 95(3), 2367-2382. https://doi.org/10.1007/s11071-018-4697-9
- Du, K., Cheng, F., Bai, J.L. and Jin, S.S. (2020), "Seismic performance quantification of buckling-restrained braced RC frame structures under near-fault ground motions", Eng. Struct., 211, 110447. https://doi.org/10.1016/j.engstruct.2020.110447
- Duan, Y.X., Wei, X.Y., Wang, H.R., Zhao, M.H., Ren, Z.M., Zhao, H.Y. and Ren, J. (2020), "Design and numerical performance analysis of a microgravity accelerometer with quasi-zero stiffness", Smart Mater. Struct., 29(7), 075018. https://doi.org/10.1088/1361-665X/ab8838
- Feng, X., Jing, X.J., Xu, Z.D. and Guo, Y.Q. (2019), "Bio-inspired anti-vibration with nonlinear inertia coupling", Mech. Syst. Signal Process., 124, 562-595. https://doi.org/10.1016/j.ymssp.2019.02.001
- Gatti, G. (2020), "Statics and dynamics of a nonlinear oscillator with quasi-zero stiffness behaviour for large deflections", Commun. Nonlinear Sci. Numer. Simul., 83, 105143. https://doi.org/10.1016/j.cnsns.2019.105143
- Guan, M., Liu, W., Lai, M.H., Du, H., Cui, J. and Gan, Y. (2019), "Seismic behavior of innovative composite walls with high-strength manufactured sand concrete", Eng. Struct., 195, 182-199. https://doi.org/10.1016/j.engstruct.2019.05.096
- Hao, Z.F. and Cao, Q.J. (2015), "The isolation characteristics of an archetypal dynamical model with stable-quasi-zero-stiffness", J. Sound Vib., 340, 61-79. https://doi.org/10.1016/j.jsv.2014.11.038
- Hao, Z.F., Cao, Q.J. and Wiercigroch, M. (2017), "Nonlinear dynamics of the quasi-zero-stiffness SD oscillator based upon the local and global bifurcation analyses", Nonlinear Dyn., 87(2), 987-1014. https://doi.org/10.1007/s11071-016-3093-6
- He, X., Chen, Y., Ke, K., Shao, T. and Yam, M.C.H. (2022), "Development of a connection equipped with fuse angles for steel moment resisting frames", Eng. Struct., 265, 114503. https://doi.org/10.1016/j.engstruct.2022.114503
- Ho, J.C.M., Ou, X.L., Chen, M.T., Wang, Q. and Lai, M.H. (2020), "A path dependent constitutive model for CFFT column", Eng. Struct., 210, 210367. https://doi.org/10.1016/j.engstruct.2020.110367
- Ho, J.C.M., Ou, X.L., Li, C.W., Song, W., Wang, Q. and Lai, M.H. (2021), "Uni-axial behaviour of expansive CFST and DSCFST stub columns", Eng. Struct., 237, 112193. https://doi.org/10.1016/j.engstruct.2021.112193
- Hu, S.L. and Wang, W. (2021), "Seismic design and performance evaluation of low-rise steel buildings with self-centering energy-absorbing dual rocking core systems under far-field and near-fault ground motions", J. Constr. Steel Res., 179, 106545. https://doi.org/10.1016/j.jcsr.2021.106545
- Hu, S.L., Wang, W. and Qu, B. (2020), "Seismic evaluation of low-rise steel building frames with self-centering energy-absorbing rigid cores designed using a force-based approach", Eng. Struct., 204, 110038. https://doi.org/10.1016/j.engstruct.2019.110038
- Hu, S.L., Zhu, S.Y., Alam, M.S. and Wang, W. (2022a), "Machine learning-aided peak and residual displacement-based design method for enhancing seismic performance of steel moment-resisting frames by installing self-centering braces", Eng. Struct., 271, 114935. https://doi.org/10.1016/j.engstruct.2022.114935
- Hu, S.L., Qiu, C.X. and Zhu, S. (2022b), "Machine learning-driven performance-based seismic design of hybrid selfcentering braced frames with SMA braces and viscous dampers", Smart Mater. Struct., 31(10), 105024. https://doi.org/10.1088/1361-665X/ac8efc
- Hu, S.L., Wang, W., Alam, M.S. and Ke, K. (2023), "Life-cycle benefits estimation of self-centering building structures", Eng. Struct., 284, 115982. https://doi.org/10.1016/j.engstruct.2023.115982
- Hua, J., Wang, F., Xue, X., Ding, Z. and Chen, Z. (2022), "Residual monotonic mechanical properties of bimetallic steel bar with fatigue damage", J. Build. Eng., 55, 104703. https://doi.org/10.1016/j.jobe.2022.104703
- Huang, X.G., Zhou, Z., Eatherton, M.R., Zhu, D. and Guo, C. (2020), "Experimental investigation of self-centering beams for moment-resisting frames", J. Struct. Eng., 146(3), 04019214. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002530
- Huang, X.G., Liu, Y. and Sun, X. (2022), "Concept and analysis of resilient frictional shear connector for coupled system", J. Build. Eng., 50, 104172. https://doi.org/10.1016/j.jobe.2022.104172
- Ibrahim, R.A. (2008), "Recent advances in nonlinear passive vibration isolators", J. Sound Vib., 314(3-5), 371-452. https://doi.org/10.1016/j.jsv.2008.01.014
- Jin, S.S., Ai, P., Zhou, J. and Bai, J.L. (2022), "Seismic performance of an assembled self-centering buckling-restrained brace and its application in arch bridge structures", J. Constr. Steel Res., 199, 107600. https://doi.org/10.1016/j.jcsr.2022.107600
- Jing, X.J., Zhang, L.L., Feng, X., Sun, B. and Li, Q.K. (2019), "A novel bio-inspired anti-vibration structure for operating handheld jackhammers", Mech. Syst. Signal Process., 118, 317-339. https://doi.org/10.1016/j.ymssp.2018.09.004
- Jing, X.J., Chai, Y.Y., Chao, X. and Bian, J. (2021), "In-situ adjustable nonlinear passive stiffness using X-shaped mechanisms", Mech. Syst. Signal Process., 170, 108267. https://doi.org/10.1016/j.ymssp.2021.108267
- Ke, K. and Chen, Y. (2014), "Energy-based damage-control design of steel frames with steel slit walls", Struct. Eng. Mech., Int. J., 52(6), 1157-1176. https://doi.org/10.12989/sem.2014.52.6.1157
- Ke, K. and Yam, M.C.H. (2016), "Energy-factor-based damagecontrol evaluation of steel MRF systems with fuses", Steel Compos. Struct., Int. J., 22(3), 589-611. http://doi.org/10.12989/scs.2016.22.3.589
- Ke, K., Wang, W., Yam, M.C.H. and Deng, L. (2019a), "Residual displacement ratio demand of oscillators representing HSSF-EDBs subjected to near-fault earthquake ground motions", Eng. Struct., 191, 598-610. https://doi.org/10.1016/j.engstruct.2019.04.054
- Ke, K., Wang, F., Yam, M.C.H., Deng, L. and He, Y. (2019b), "A multi-stage-based nonlinear static procedure for estimating seismic demands of steel MRFs equipped with steel slit walls", Eng. Struct., 183, 1091-1108. https://doi.org/10.1016/j.engstruct.2019.01.029
- Ke, K., Yam, M.C., Zhang, P., Shi, Y., Li, Y. and Liu, S. (2023a), "Self-centring damper with multi-energy-dissipation mechanisms: Insights and structural seismic demand perspective", J. Constr. Steel Res., 204, 107837. https://doi.org/10.1016/j.jcsr.2023.107837
- Ke, K., Chen, Y.H., Zhou, X.H., Yam, M.C.H. and Hu, S.L. (2023b), "Experimental and numerical study of a brace-type hybrid damper with steel slit plates enhanced by friction mechanism", Thin-Wall. Struct., 182, 110249. https://doi.org/10.1016/j.tws.2022.110249
- Kovacic, I., Brennan, M.J. and Waters, T.P. (2008), "A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic", J. Sound Vib., 315(3), 700-711. https://doi.org/10.1016/j.jsv.2007.12.019
- Lai, M.H. and Ho, J.C.M. (2017), "An analysis-based model for axially loaded circular CFST columns", Thin-Wall. Struct., 119, 770-781. https://doi.org/10.1016/j.tws.2017.07.024
- Lai, M.H., Song, W., Ou, X.L., Chen, M.T., Wang, Q. and Ho, J.C.M. (2020), "A path dependent stress-strain model for concrete-filled-steel-tube column", Eng. Struct., 211, 110312. https://doi.org/10.1016/j.engstruct.2020.110312
- Li, H.T., Ding, H., Jing, X.J., Qin, W.Y. and Chen, L.Q. (2021), "Improving the performance of a tri-stable energy harvester with a staircase-shaped potential well", Mech. Syst. Signal Process., 159, 107805. https://doi.org/10.1016/j.ymssp.2021.107805
- Li, Y.W., Yam, M.C.H., Zhang, P., Ke, K. and Wang, Y.B. (2022), "Development of self-centring energy-dissipative rocking columns equipped with SMA tension braces", Struct. Eng. Mech., Int. J., 82(5), 611-628. https://doi.org/10.12989/sem.2022.82.5.611
- Ling, P., Miao, L., Zhang, W., Wu, C. and Yan, B. (2022), "Cockroach-inspired structure for low-frequency vibration isolation", Mech. Syst. Signal Process., 171, 108955. https://doi.org/10.1016/j.ymssp.2022.108955
- Liu, C.C., Jing, X.J., Daley, S. and Li, F.M. (2015), "Recent advances in micro-vibration isolation", Mech. Syst. Signal Process., 56, 55-80. https://doi.org/10.1016/j.ymssp.2014.10.007
- Liu, C.R., Zhao, R., Yu, K.P., Lee, H.P. and Liao, B.P. (2021), "A quasi-zero-stiffness device capable of vibration isolation and energy harvesting using piezoelectric buckled beams", Energy, 233, 121146.
- Lu, Y., Liu, Y., Wang, Y., Liu, J. and Huang, X.G. (2023), "Development of a novel buckling-restrained damper with additional friction energy dissipation: Component tests and structural verification", Eng. Struct., 274, 115188. https://doi.org/10.1016/j.engstruct.2022.115188
- Mao, Y. and Saharabudhe, S. (2006), "Nonlinear, seismic response spectra of smart sliding isolated structures with independently variable MR dampers and variable stiffness SAVS system", Struct. Eng. Mech., Int. J., 24(3), 375-393. https://doi.org/10.12989/sem.2006.24.3.375
- Orlando, D. and Goncalves, P.B. (2013), "Hybrid nonlinear control of a tall tower with a pendulum absorber", Struct. Eng. Mech., Int. J., 46(2), 153-177. https://doi.org/10.12989/sem.2013.46.2.153
- Oyelade, A.O. (2020), "Experiment study on nonlinear oscillator containing magnetic spring with negative stiffness", Int. J. Non-Linear Mech., 120, 103396. https://doi.org/10.1016/j.ijnonlinmec.2019.103396
- Ren, F.M., Tian, S.Y., Gong, L., Wu, J.L., Mo, J.X., Lai, C.L. and Lai, M.H. (2023), "Seismic performance of a ring beam joint connecting FTCES column and RC/ESRC beam with NSC", J. Build. Eng., 105366. https://doi.org/10.1016/j.jobe.2022.105366
- Shaw, A.D., Gatti, G., Goncalves, P.J.P., Tang, B. and Brennan, M.J. (2021), "Design and test of an adjustable quasi-zero stiffness device and its use to suspend masses on a multi-modal structure", Mech. Syst. Signal Process., 152, 107354. https://doi.org/10.1016/j.ymssp.2020.107354
- Shi, Y., Luo, Z., Zhou, X., Xue, X. and Li, J. (2022), "Post-fire mechanical properties of titanium-clad bimetallic steel in different cooling approaches", J. Constr. Steel Res., 191, 107169. https://doi.org/10.1016/j.jcsr.2022.107169
- Shi, Y., Wang, J., Zhou, X. and Xue, X. (2023), "Post-fire properties of stainless - clad bimetallic steel produced by explosive welding process", J. Constr. Steel Res., 201, 107690. https://doi.org/10.1016/j.jcsr.2022.107690
- Valeev, A., Tashbulatov, R. and Mastobaev, B. (2021), "Designing and experimental study of compact vibration isolator with quasi-zero stiffness", Struct. Eng. Mech., Int. J., 79(4), 415-428. https://doi.org/10.12989/sem.2021.79.4.415
- Wang, Y. and Jing, X.J. (2019), "Nonlinear stiffness and dynamical response characteristics of an asymmetric X-shaped structure", Mech. Syst. Signal Process., 125, 142-169. https://doi.org/10.1016/j.ymssp.2018.03.045
- Wang, K., Zhou, J.X., Chang, Y.P., Ouyang, H.J., Xu, D.L. and Yang, Y. (2020a), "A nonlinear ultra-low-frequency vibration isolator with dual quasi-zero-stiffness mechanism", Nonlinear Dyn., 101(2), 755-773. https://doi.org/10.1007/s11071-020-05806-0
- Wang, L., Zhang, Y.W., Ho, J.C.M. and Lai, M.H. (2020b), "Fatigue behaviour of composite sandwich beams strengthened with GFRP stiffeners", Eng. Struct., 214, 110596. https://doi.org/10.1016/j.engstruct.2020.110596
- Wang, Q., Zhou, J.X., Xu, D.L. and Ouyang, H.J. (2020c), "Design and experimental investigation of ultra-low frequency vibration isolation during neonatal transport", Mech. Syst. Signal Process., 139, 106633. https://doi.org/10.1016/j.ymssp.2020.106633
- Wang, K., Zhou, J.X., Ouyang, H.J., Chang, Y.P. and Xu, D.L. (2021), "A dual quasi-zero-stiffness sliding-mode triboelectric nanogenerator for harvesting ultralow-low frequency vibration energy", Mech. Syst. Signal Process., 151, 107368. https://doi.org/10.1016/j.ymssp.2020.107368
- Wang, L., Sun, J., Ding, T., Liang, Y., Ho, J.C.M. and Lai, M.H. (2022), "Manufacture and behaviour of innovative 3D printed auxetic composite panels subjected to low-velocity impact load", Structures, 38, 910-933. https://doi.org/10.1016/j.istruc.2022.02.033
- Wu, W.J., Chen, X.D. and Shan, Y.H. (2014), "Analysis and experiment of a vibration isolator using a novel magnetic spring with negative stiffness", J. Sound Vib., 333(13), 2958-2970. https://doi.org/10.1016/j.jsv.2014.02.009
- Wu, Z., Jing, X.J., Bian, J., Li, F.M. and Allen, R. (2015), "Vibration isolation by exploring bio-inspired structural nonlinearity", Bioinspir. Biomim., 10(5), 056015. https://doi.org/10.1088/1748-3190/10/5/056015
- Xu, D.L., Yu, Q.P., Zhou, J.X. and Bishop, S.R. (2013), "Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic", J. Sound Vib., 332(14), 3377-3389. https://doi.org/10.1016/j.jsv.2013.01.034
- Yam, M.C.H., Ke, K., Lam, A.C.C. and Zhao, Q. (2019), "Performance of single-coped beam with slender web and quantification of local web buckling strength", Thin-Wall. Struct., 144, 106355. https://doi.org/10.1016/j.tws.2019.106355
- Yam, M.C.H., Ke, K., Huang, Y., Zhou, X.H. and Liu, Y.C. (2022), "A study of hybrid self-centring beam-to-beam connections equipped with shape-memory-alloy-plates and washers", J. Constr. Steel Res., 198, 107526. https://doi.org/10.1016/j.jcsr.2022.107526
- Yan, G., Zou, H.X., Wang, S., Zhao, L.C. and Wu, Z.Y. (2022), "Bio-inspired toe-like structure for low-frequency vibration isolation", Mech. Syst. Signal Process., 162, 108010. https://doi.org/10.1016/j.ymssp.2021.108010
- Yang, T., Cao, Q.J. and Hao, Z.F. (2021), "A novel nonlinear mechanical oscillator and its application in vibration isolation and energy harvesting", Mech. Syst. Signal Process, 155, 107636. https://doi.org/10.1016/j.ymssp.2021.107636
- Yao, Y.H., Li, H.G., Li, Y. and Wang, X.J. (2020), "Analytical and experimental investigation of a high-static-low-dynamic stiffness isolator with cam-roller-spring mechanism", Int. J. Mech. Sci., 186, 105888. https://doi.org/10.1016/j.ijmecsci.2020.105888
- Ye, K., Ji, J.C. and Brown, T. (2020), "Design of a quasi-zero stiffness isolation system for supporting different loads", J. Sound Vib., 471, 115198. https://doi.org/10.1016/j.jsv.2020.115198
- Yi, S., Chen, M.T. and Young, B. (2023), "Design of concrete-filled cold-formed steel elliptical stub columns", Eng. Struct., 276, 115269. https://doi.org/10.1016/j.engstruct.2022.115269
- Zhang, R., Wang, W. and Ke, K. (2020), "Quantification of seismic demands of damage-control tension-only concentrically braced steel beam-through frames (TCBSBFs) subjected to near-fault ground motions based on the energy factor", Soil Dyn. Earthq. Eng., 129, 105910. https://doi.org/10.1016/j.soildyn.2019.105910
- Zhang, P., Yam, M. C.H., Ke, K., Zhou, X.H. and Chen, Y. (2022), "Steel moment resisting frames with energy-dissipation rocking columns under near-fault earthquakes: Probabilistic performance-based-plastic-design for the ultimate stage", J. Build. Eng., 54, 104625. https://doi.org/10.1016/j.jobe.2022.104625
- Zhang, H., Zhou, X.H., Ke, K., Yam, M.C.H., He, X. and Li, H. (2023), "Self-centring hybrid-steel-frames employing energy dissipation sequences: Insights and inelastic seismic demand model", J. Build. Eng., 63, 105451. https://doi.org/10.1016/j.jobe.2022.105451
- Zhao, F., Ji, J.C., Ye, K. and Luo, Q.T. (2020), "Increase of quasi-zero stiffness region using two pairs of oblique springs", Mech. Syst. Signal Process., 144, 106975. https://doi.org/10.1016/j.ymssp.2020.106975
- Zheng, Y.S., Zhang, X.N., Luo, Y.J., Zhang, Y.H. and Xie, S.L. (2018), "Analytical study of a quasi-zero stiffness coupling using a torsion magnetic spring with negative stiffness", Mech. Syst. Signal Process., 100, 135-151. https://doi.org/10.1016/j.ymssp.2017.07.028
- Zhong, R.M., Zong, Z.H., Pai, P.F. and Ruan, X.W. (2019), "Multi-stopband negative stiffness composite column design for vibration absorption", Thin-Wall. Struct., 144, 106330. https://doi.org/10.1016/j.tws.2019.106330
- Zhou, X.H., Zhang, H., Ke, K., Guo, L. and Yam, M.C.H. (2021a), "Damage-control steel frames equipped with SMA connections and ductile links subjected to near-field earthquake motions: A spectral energy factor model", Eng. Struct., 239, 112301. https://doi.org/10.1016/j.engstruct.2021.112301
- Zhou, X.H., Ke, K., Yam, M.C.H., Zhao, Q., Huang, Y. and Di, J. (2021b), "Shape memory alloy plates: Cyclic tension-release performance, seismic applications in beam-to-column connections and a structural seismic demand perspective", Thin-Wall. Struct., 167, 108158. https://doi.org/10.1016/j.tws.2021.108158
- Zhou, S.H., Liu, Y.L., Jiang, Z.Y. and Ren, Z.H. (2022a), "Nonlinear dynamic behavior of a bio-inspired embedded X-shaped vibration isolation system", Nonlinear Dyn., 110, 153-175. https://doi.org/10.1007/s11071-022-07610-4
- Zhou, X.H., Chen, Y., Ke, K., Yam, M.C.H. and Li, H. (2022b), "Hybrid steel staggered truss frame (SSTF): A probabilistic spectral energy modification coefficient surface model for damage-control evaluation and performance insights", J. Build. Eng., 45, 103556. https://doi.org/10.1016/j.jobe.2021.103556
- Zhou, Z., Ke, K., Chen, Y. and Yam, M.C.H. (2022c), "High strength steel frames with curved knee braces: performance-based damage-control design framework", J. Constr. Steel Res., 196, 107392. https://doi.org/10.1016/j.jcsr.2022.107392
- Zhou, X.H., Tan, Y.C., Ke, K., Yam, M.C.H., Zhang, H.Y. and Xu, J.Y. (2023), "An experimental and numerical study of brace-type long double C-section steel slit dampers", J. Build. Eng., 64, 105555. https://doi.org/10.1016/j.jobe.2022.105555
- Zou, D.L., Liu, G.Y., Rao, Z.S., Tan, T., Zhang, W.M. and Liao, W.H. (2021), "A device capable of customizing nonlinear forces for vibration energy harvesting, vibration isolation, and nonlinear energy sink", Mech. Syst. Signal Process., 147, 107101. https://doi.org/10.1016/j.ymssp.2020.107101