DOI QR코드

DOI QR Code

Effect of water temperature and soil type on infiltration

  • Mina Torabi (Department of Civil Engineering, Islamic University of Arak) ;
  • Hamed Sarkardeh (Department of Civil Engineering, Faculty of Engineering, Hakim Sabzevari University) ;
  • S. Mohamad Mirhosseini (Department of Civil Engineering, Arak Branch, Islamic Azad University) ;
  • Mehrshad Samadi (School of Civil Engineering, Iran University of Science and Technology)
  • 투고 : 2021.09.20
  • 심사 : 2023.01.31
  • 발행 : 2023.02.25

초록

Temperature is one of the important factors affecting the permeability of water in the soil. In the present study, the impact of water temperature on hydraulic conductivity (k) with and without coarse aggregations by considering six types of soils was analyzed. Moreover, the effect of sand and gravel presence in the soil was investigated through the infiltration based on constant and inconstant water head experiments. Results indicated that by increasing the water temperature, adding gravel to sandy soil caused the hydraulic conductivity to raise. It is supposed that the gravel decreased the contact surface between the water and the soil aggregates. It is deduced that due to decreasing kinetic energy, k tends to have lower values. Furthermore, adding the sand to sandy silt-clay soil showed that the sand did not have a marginal effect on the variation of k since the added sand cannot increase the contact surface like gravel. Finally, increasing the main diameter of the soil will increase the effect of the water temperature on hydraulic conductivity.

키워드

참고문헌

  1. Abuel-Naga, H.M., Bergado, D.T., Ramana, G.V., Grino, L., Rujivipat, P. and Thet, Y. (2006), "Experimental evaluation of engineering behavior of soft Bangkok clay under elevated temperature", J. Geotech. Geoenviron., 132, 902-910. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:7(902).
  2. Al-Hinti, I., Al-Muhtady, A. and Al-Kouz, W. (2017), "Measurement and modelling of the ground temperature profile in Zarqa, Jordan for geothermal heat pump applications", Appl. Therm. Eng., 123, 131-137. https://doi.org/10.16/J.APPLTHERMALENG.2017.05.107.
  3. Bear, J. (1972), Dynamics of Fluids in Porous Media, American Elsevier, New York.
  4. Beier, R.A., Mitchell, M.S., Spitler, J.D. and Javed, S. (2018), "Validation of borehole heat exchanger models against multi-flow rate thermal response tests", Geothermics, 71, 55-68. https://doi.org/10.1016/j.geothermics.2017.08.006.
  5. Bouyoucos, G.J. (1915), Effect of temperature on some of the most important physical processes in the soil. In: Mich. Agric. Exp. Stn. Tech. Bull. no.22.
  6. Braga, A., Horst, M. and Traver, R.G. (2007), "Temperature effects on the infiltration rate through an infiltration basin BMP. Journal of irrigation and drainage engineering", 133(6), 593-601. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:6(593).
  7. Chen, L. and Zhang, X. (2020), "A model for predicting the hydraulic conductivity of warm saturated frozen soil", Build. Environ., 106939. https://doi.org/10.1016/j.buildenv.2020.106939.
  8. Cho, W.J., Lee, J.O. and Chun, K.S. (1999), "The temperature effects on hydraulic conductivity of compacted bentonite", Appl. Clay Sci., 14, 47-58. https://doi.org/10.1016/S0169-1317(98)00047-7.
  9. Delage, P., Sultan, N. and Cui, Y.J. (2000), "On the thermal consolidation of Boom clay", Can.Geotech. J., 37(2), 343-354. https://doi.org/10.1139/t99-105.
  10. Delage, P., Sultan, N., Cui, Y.J. and Ling, L.X. (2011), "Permeability changes in Boom clay with temperature", In: arXiv: Other Condensed Matter.1112.6396, 331-335.
  11. Gao, H. and Shao, M. (2015), "Effects of temperature changes on soil hydraulic properties", Soi Tillage Res., 153, 145-154. https://doi.org/10.1016/j.still.2015.05.003.
  12. Guerra, H.B., Yuan, Q. and Kim, Y. (2019), "Factors affecting the infiltration rate and removal of suspended solids in gravel-filled stormwater management structures", Membrane Water Treatment, 10(1). https://doi.org/10.12989/mwt.2019.10.1.067.
  13. Jaynes, D.B. (1990), "Temperature variations effect on field-measured infiltration", Soil Sci. Soc. Am. J., 54(2), 305-312. https://doi.org/10.2136/sssaj1990.03615995005400020002x.
  14. Kayaci, N. and Demir, H. (2018), "Numerical modelling of transient soil temperature distribution for horizontal ground heat exchanger of ground source heat pump", Geothermics, 73, 33-47. https://doi.org/10.1016/j.geothermics.2018.01.009.
  15. Ma, C., Zhang, C., Chen, Q., Pan Z. and Ma L. (2021), "On the effect of void ratio and particle breakage on saturated hydraulic conductivity of tailing materials", Geomech. Eng., 25(2), 159-170. https://doi.org/10.12989/gae.2021.25.2.159.
  16. Ming, F., Chen, L., Li, D.Q. and Wei, X.B. (2019), "Estimation of hydraulic conductivity of saturated frozen soil from the soil freezing characteristic curve", Sci. Total Environ., 698(2020) 134132. https://doi.org/10.1016/j.scitotenv.2019.134132.
  17. Ouzzane, M., Eslami-Nejad, P., Aidoun, Z. and Lamarche, L. (2014), "Analysis of the convective heat exchange effect on the undisturbed ground temperature", Solar Energy, 108, 340-347. https://doi.org/10.1016/j.solener.2014.07.015.
  18. Qi, S., Vanapalli, S.K., Yang, X.G., Zhou J.W. and Lu, G.D. (2019), "Stability analysis of an unsaturated expansive soil slope subjected to rainfall infiltration", Geomech. Eng., 19(1), 1-9. https://doi.org/10.12989/gae.2019.19.1.001.
  19. Raghunath, H.M. (2006), Hydrology: principles, analysis and design. New Age Int.
  20. Rasool, A.M. and Aziz, M. (2019), "Shear infiltration and constant water content tests on unsaturated soils", Geomech. Eng., 19(5), 435-445. https://doi.org/10.12989/gae.2019.19.5.435.
  21. Rasool, A.M. and Kuwano, J. (2020), "Effect of constant loading on unsaturated soil under water infiltration conditions", Geomech. Eng., 20(3), 221-232. https://doi.org/10.12989/gae.2020.20.3.221.
  22. Richards, L.A. (1931), "Soil-water conduction of liquids in porous mediums", Physics, 1, 318-333. https://doi.org/10.1063/1.1745010
  23. Sajjadi, S.A.H., Mirzaei, M., Nasab, A.F., Ghezelje, A., Tadayonfar, G. and Sarkardeh, H. (2016), "Effect of soil physical properties on infiltration rate", Geomech. Eng., 10(6), 727-736. https://doi.org/10.12989/gae.2016.10.6.727.
  24. Song, Y.S. and Hong, S. (2020), "Infiltration characteristics and hydraulic conductivity of weathered unsaturated soils", Geomech. Eng., 22(2), 153-163. https://doi.org/10.12989/gae.2020.22.2.153.
  25. Stevens, J. (1982), "Unified soil classification system", Civil Eng.-ASCE, 52(12), 61-62.
  26. Subramanian, S., Zhang, Y., Vinoth, G., Moon, J. and Ku, T. (2020), "Hydraulic conductivity of cemented sand from experiments and 3D Image based numerical analysis", Geomech. Eng., 21(5), 423-432. https://doi.org/10.12989/gae.2020.21.5.423.
  27. Tokoro, T., Ishikawa, T. and Akagawa, T. (2010), "A method for permeability measurement of frozen soil using an ice lens inhibition technique", Jpn. Geotech. J., 5(4), 603-613. https://doi.org/10.3208/jgs.5.603.
  28. Torabi, M., Sarkardeh, H. and Mirhosseini, S.M. (2020), "Effect of water temperature on hydraulic conductivity of soil with and without coarse aggregates", Proceedings of the 19th Iranian Hydraulic Conference, Mashhad, Iran.
  29. Torabi, M., Sarkardeh, H. and Mirhosseini, S.M. (2022), "Estimating the permeability coefficient of soil using CART and GMDH approaches", Water Supply, 22(8), 6756-6764. https://doi.org/10.2166/ws.2022.248.
  30. Torabi, M., Sarkardeh, H. and Mirhosseini, S.M. (2022), "Prediction of soil permeability coefficient using the GEP approach", J. Numer. Method. Civil Eng., 7(1), 9-15. https://doi.org/10.52547/nmce.2022.414.
  31. Villar, M.V. and Lloret, A. (2004), "Influence of temperature on the hydromechanical behaviour of a compacted bentonite", Appl. Clay Sci., 26, 337-350. https://doi.org/10.1016/j.clay.2003.12.026.
  32. Watanabe, K. and Osada, Y. (2016), "Comparison of hydraulic conductivity in frozen saturated and unfrozen unsaturated soils", Vadose Zone J., 15(5). https://doi.org/10.2136/vzj2015.11.0154.
  33. Yang, J.L. and Zhang, G.L. (2011), "Water infiltration in urban soils and its effects on the quantity and quality of runoff", J. Soils Sediments, 11(5), 751-761. https://doi.org/10.1007/s11368-011-0356-1.
  34. Zhu, H., Zhang, L., Chen C. and Chan, K. (2018), "Three-dimensional modelling of water flow due to leakage from pressurized buried pipe", Geomech. Eng., 16(4), 423-433. https://doi.org/10.12989/gae.2018.16.4.423.