Acknowledgement
The authors would like to acknowledge the financial support provided by Mehran University of Engineering & Technology, Jamshoro, Sindh and Pakistan.
References
- Atkinson, J.H., Richardson, D. and Stallebrass, S.E.. (1990), "Effect of recent stress history on the stiffness of overconsolidated soil", Geotechnique, 40(4), 531-540. https://doi.org/10.1680/geot.1990.40.4.531.
- Boone, S.J., Westland, J. and Nusink, R. (1999), "Comparative evaluation of building responses to an adjacent braced excavation, Can. Geotech. J., 36(2), 210-223. https://doi.org/10.1139/t98-100.
- Ding, Z., Wei, X.J. and Wei, G. (2017), "Prediction methods on tunnel-excavation induced surface settlement around adjacent building", Geomech. Eng., 12(2), 185-195. https://doi.org/10.12989/gae.2017.12.2.185.
- CEN (2001), Eurocode 7, part 1: Geotechnical design: General rules, Final Draft prEN 1997-1. Brussels, Belgium: European Committee for Standardization (CEN).
- Finno, R.J., Lawrence, S.A., Allawh, N.F. and Harahap, I.S. (1991), "Analysis of performance of pile groups adjacent to deep excavation", J. Geotech..Eng., 117(6), 934-955. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:6(934).
- Fang, J., Kong, G. and Yang, Q. (2022), "Group performance of energy piles under cyclic and variable thermal loading", J. Geotech. Geoenviron. Eng., 148(8), 04022060. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002840.
- Goh, A.T.C., Wong, K.S., Teh, C.I. and Wen, D. (2003), "Pile response adjacent to braced excavation", J. Geotech. Geoenviron. Eng., 129(4), 383-386. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:4(383).
- Gudehus, G. (1996), "A comprehensive constitutive equation for granular materials", Soils Found., 36(1), 1-12. https://doi.org/10.3208/sandf.36.1.
- Herle, I. and Gudehus, G. (1999), "Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies", Mech. Cohesive-frictional Mater., 4(5), 461-486. https://doi.org/10.1002/(sici)10991484(199909)4:5%3C461::aid-cfm71%3E3.0.co;2-p.
- Hibbitt, D., Karlsson, B.I. and Sorensen, E.P. (2010), Abaqus user's manual, version 6.10.2. Hibbitt, Karlsson & Sorensen Inc;, Providence, RI, USA.
- Hong, Y., Ng, C.W.W., Liu, G.B. and Liu, T. (2015), "Three-dimensional deformation behaviour of a multi-propped excavation at a "greenfield" site at Shanghai soft clay", Tunn. Undergr. Sp. Tech., 45, 249-259. https://doi.org/10.1016/j.tust.2014.09.012.
- Hsiao, E.C., Schuster, M., Juang, C.H. and Kung, G.T. (2008), "Reliability analysis and updating of excavation-induced ground settlement for building serviceability assessment", J. Geotech. Geoenviron. Eng., 134(10), 1448-1458. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:10(1448).
- Ishihara, K. (1993), "Liquefaction and flow failure during earthquakes", Geotechnique, 43(3), 351-415. https://doi.org/10.1680/geot.1993.43.3.351.
- Jaky, J. (1944), "The coefficient of earth pressure at rest", J. Soc Hungarian Arch. Eng., 355-8 [in Hungarian].
- Jamil, I. and Ahmad, I. (2019), "Bending moments in raft of a piled raft system using Winkler analysis", Geomech. Eng., 18(1), 41-48. https://doi.org/10.12989/gae.2019.18.1.041.
- Karira, H., Kumar, A., Ali, T.H., Mangnejo, D.A. and Mangi, N. (2022), "A parametric study of settlement and load transfer mechanism of piled raft due to adjacent excavation using 3D finite element analysis", Geomech. Eng., 30(2), 169-185. https://doi.org/10.12989/gae.2022.30.2.169.
- Korff, M., Mair, R.J. and Van Tol, F.A.F. (2016), "Pile-soil interaction and settlement effects induced by deep excavations", J. Geotech. Geoenviron. Eng., 138(7), 04016034. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001434.
- Liyanapathirana, D.S. and Nishanthan, R. (2016), "Influence of deep excavation induced ground movements on adjacent piles", Tunn. Undergr. Sp. Tech., 52, 168-181. https://doi.org/10.1016/j.tust.2015.11.019.
- Lee, S.W. (2019), "Experimental study on effect of underground excavation distance on the behavior of retaining wall", Geomech. Eng., 17(5), 413-420. https://doi.org/10.12989/gae.2019.17.5.413.
- Long, M. (2001), "Database for retaining wall and ground movements due to deep excavations", J. Geotech. Geoenviron. Eng., 127(3), 203-224. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:3(203).
- Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic-damage model for concrete", Int. J. Solids. Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4.
- Mu, L., Huang, M., Roodi, G.H. and Shi, Z. (2021), "Allowable wall deflection of braced excavation adjacent to pile-supported buildings", Geomech. Eng., 26(2), 161-173. https://doi.org/10.12989/gae.2021.26.2.161.
- Maeda, K. and Miura, K. (1999), "Relative density dependency of mechanical properties of sands", Soils Found., 39(1), 69-79. https://doi.org/10.3208/sandf.39.69.
- Niemunis, A. and Herle, I. (1997), "Hypoplastic model for cohesionless soils with elastic strain range", Mech. Cohesive-frictional Mater., 2(4), 279-299. https://doi.org/10.1002/(SICI)1099-1484(199710)2:4<279::AID-CFM29>3.0.CO;2-8
- Ng, C.W., Wei, J., Poulos, H. and Liu, H. (2017), "Effects of multipropped excavation on an adjacent floating pile", J. Geotech. Geoenviron. Eng., 143(7), 04017021. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001696.
- Ng, C.W.W., Shakeel, M., Wei, J. and Lin, S. (2021), "Performance of existing piled raft and pile group due to adjacent multipropped excavation: 3D centrifuge and numerical modeling", J. Geotech. Geoenviron. Eng., 147(4), 04021012.
- Poulos, H.G. (2001), "Piled raft foundations: design and applications", Geotechnique, 51(2), 95-113. https://doi.org/10.1680/geot.2001.51.2.95.
- O'Brien, A.S. (2012), "Chapter 52 Foundation types and conceptual design principles", ICE manual of geotechnical engineering, 2, 733-764.
- Qian, J. Tong, Y. Mu, L. Lu, Q. and Zhao, H. (2020), "A displacement controlled method for evaluating ground settlement induced by excavation in clay", Geomech. Eng., 20(4), 275-285. https://doi.org/10.12989/gae.2020.20.4.275.
- Shi, J., Wei, J., Ng, C.W.W. and Lu, H. (2019), "Stress transfer mechanisms and settlement of a floating pile due to adjacent multi-propped deep excavation in dry sand", Comput. Geotech., 116, 103216. https://doi.org/10.1016/j.compgeo.2019.103216.
- Shi, J., Chen, Y., Lu, H., Ma, S. and Ng, C.W.W. (2022a), "Centrifuge modeling of the influence of joint stiffness on pipeline response to underneath tunnel excavation", Can. Geotech. J., (Online). https://doi.org/10.1139/cgj-2020-0360.
- Shi, J., Wei, J., Ng, C.W., Lu, H., Ma, S., Shi, C. and Li, P. (2022b), "Effects of construction sequence of double basement excavations on an existing floating pile", Tunn. Undergr. Sp. Tech., 119, 104230. https://doi-org/10.1016/j.tust.2021.104230.
- Skempton, A.W. and Macdonald, D.H. (1956), "The allowable settlement of building", Proc. Inst Civil Eng., 5(6), 727-768. https://doi.org/10.1680/ipeds.1956.12202
- Soomro, M.A., Mangi, N., Memon, A.H. and Mangnejo, D.A. (2022), "Responses of high-rise building resting on piled raft to adjacent tunnel at different depths relative to piles", Geomech. Eng., 29(1), 25-40. https://doi.org/10.12989/gae.2022.29.1.025.
- Standards Australia (2002), "Structural design actions; Part 1 Permanent, imposed and other actions", AS1170.1, Sydney Australia: Standards Australia.
- Zhang, R., Zheng, J., Pu, H. and Zhang, L. (2011), "Analysis of excavation-induced responses of loaded pile foundations considering unloading effect", Tunn. Undergr. Sp. Tech., 26(2), 320-335. https://doi.org/10.1016/j.tust.2010.11.003.
- Zhang, L.M. and Ng, A.M.Y. (2005), "Probabilistic limiting tolerable displacements for serviceability limit state design of foundations", Geotechnique, 55(2), 151-161. https://doi.org/10.1680/geot.2005.55.2.151.