Acknowledgement
The authors express their thanks to the civil engineering department at Laval University for their investment in the computational software and technical support of the hardware.
References
- Alielahi, H. and Adampira, M. (2016), "Comparison between empirical and experimental ultimate bearing capacity of bored piles; a case study", Arab. J. Geosci., 9(1), 16. https://doi.org/10.1007/s12517-015-2211-y.
- Al-Soudani, W.H. and Albusoda, B.S. (2021), "An experimental study on bearing capacity of steel open ended pipe pile with exterior wings under compression load", Geotech. Geol. Eng., 39, 1299-1318. https://doi.org/10.1007/s10706-020-01559-0.
- Bakroon, M., Daryaei, R., Aubram, D. and Rackwitz, F. (2019), "Numerical evaluation of buckling in steel pipe piles during vibratory installation", Soil Dyn. Earthq. Eng., 122, 327-336. https://doi.org/10.1016/j.soildyn.2018.08.003.
- Broms, B.B. (1963), "Allowable bearing capacity of initially bent piles", J. Soil Mech. Found. Div. (ASCE), 89(5), 73-92. https://doi.org/10.1061/JSFEAQ.0000559
- Budhu, M. (2007), Foundations and Earth Retaining Structures, John Wiley & Sons, Tucson, Arizona, USA.
- Budhu, M. (2010), Soil Mechanics and Foundations, John Wiley & Sons, Tucson, Arizona, USA.
- Canadian Steel Handbook (2007), Canadian Institute of Steel Construction (CISC), 9th Ed., 3rd rev. ISBN: 9780888111241, 088811124X.
- Cheung, Y.K., Lee, P.K.K. and Zhao, W.B. (1991), "Elastoplastic analysis of soil-pile interaction", Comput. Geotech., 12(2), 115-132. https://doi.org/10.1016/0266-352x(91)90002-w.
- Comodromos, E.M., Anagnostopoulos, C.T. and Georgiadi, M.K. (2003), "Numerical assessment of axial pile group response based on load test", Comput. Geotech., 30(6), 505-515. https://doi.org/10.1016/s0266-352x(03)00017-x.
- Comodromos, E.M., Papadopoulou, M.C. and Rentzeperis, I.K. (2009), "Pile foundation analysis and design using experimental data and 3-D numerical analysis", Comput. Geotech., 36(5), 819-836. https://doi.org/10.1016/j.compgeo.2009.01.011.
- COMSOL Multiphysics Reference Manual. (2018), Version 5.4., https://doc.comsol.com/5.4/doc/com.comsol.help.comsol/COMSOL_ProgrammingReferenceManual.pdf.
- Deng, T., Liu, Q. and Huang, M. (2016), "Buckling of fully embedded single piles by using the modified Vlasov foundation model", Int. J. Struct. Stab. Dyn., 17(1), 1750007. https://doi.org/10.1142/s0219455417500079.
- Desai, C.S. (1974), "Numerical design-analysis for piles in sands", J. Geotech. Eng. Div. (ASCE), 100(6), 613-635. https://doi.org/10.1016/0148-9062(74)91242-x.
- Desai, C.S. and Holloway, D.M. (1972), "Load-deformation analysis of deep pile foundations", Proceedings of the Symposium on Applications of the Finite Element Method in Geotechnical Engineering, Vicksburg, Mississippi, May.
- Drucker, D.C. and Prager, W. (1952), "Soil mechanics and plastic analysis or limit design", J. Appl. Math., 10(2), 157-165. https://doi.org/10.1090/qam/48291.
- Duncan, J.M. and Chang, C.Y. (1970), "Nonlinear analysis of stress and strain in soils", J. Soil Mech. Found. Div. (ASCE), 96(5), 1629-1653. https://doi.org/10.1061/JSFEAQ.0001458
- Dunlop, P., Sandiford, R.E. and Erali, D.R. (1993), "Instrumented load test on a bent pile", Proceedings of the 3rd International Conference on Case Histories in Geotechnical Engineering, Rolla, Missouri, June.
- Dusicka P., Itanib A.M. and Buckleb I.G. (2007), "Cyclic response of plate steels under large inelastic strains", J. Constr. Steel Res., 63, 156-164. https://doi.org/10.1016/j.jcsr.2006.03.006.
- El Kamash, W. and El Naggar, H. (2018), "Numerical study on buckling of end-bearing piles in soft soil subjected to axial loads", Geotech. Geol. Eng., 36(5), 3183-3201. https://doi.org/10.1007/s10706-018-0529-4.
- Eslami, A. and Fellenius, B.H. (1997), "Pile capacity by direct CPT and CPTu methods applied to 102 case histories", Can. Geotech. J., 34(6), 886-904. https://doi.org/10.1139/t97-056.
- Fahey, M. and Carter, J.P. (1993), "A finite element study of the pressure-meter test in sand using non-linear elastic plastic model", Can. Geotech. J., 30(2), 348-362. https://doi.org/10.1139/t94-096.
- Foriero, A. and Bayati, Z. (2018), "Three dimensional FEM buckling analyses of piles embedded in various soil types", Struct. Integr. Life, 18(3), 171-179. UDC: 624.012.45.072.2.04:519.673.
- Foriero, A. (2004), "Notes de cours supplementaires". Introduction a la methode des elements finis, Universite Laval, Quebec, Cours GCI-7030, 1-106.
- Foriero, A. and Ladanyi, B. (1995), "FEM simulation of interface problem for laterally loaded piles in permafrost", Cold Reg. Sci. Technol., 23(2), 121-126. https://doi.org/10.1016/0165-232x(94)00008-l.
- Foriero, A. and Ladanyi, B. (1991), "Generalized FEM algorithm for laterally loaded piles in permafrost", Can. Geotech. J., 28(4), 523-541. https://doi.org/10.1139/t91-069.
- Foriero, A. and Ladanyi, B. (1990), "Finite element simulation of behaviour of laterally loaded piles in permafrost", J. Geotech. Eng. (ASCE), 116(2), 266-284. https://doi.org/10.1061/(asce)0733-9410(1990)116:2(266).
- Glick, G.W. (1948), "Influence of soft ground on the design of long piles", Proceedings of the 2nd International Conference on Soil Mechanics and Foundation Engineering, Institution of Civil Engineers, London, June.
- Hardin, B.O. and Drnevich, V.P. (1972), "Shear modulus and damping in soils: Design equations and curves", J. Soil Mech. Found. Div. ASCE, 98(7), 667-692. https://doi.org/10.1061/JSFEAQ.0001760
- Hataf, N. and Shafaghat, A. (2015), "Numerical comparison of bearing capacity of tapered pile groups using 3D FEM", Geomech. Eng., 9(5), 547-567. https://doi.org/10.12989/gae.2015.9.5.547.
- Heyman, J. (1972), Coulomb's Memoir on Statics, Cambridge University Press, Cambridge,
- Jaky, J. (1944), "The coefficient of earth pressure at rest", J. Soc. Hungarian Architects Eng., 7, 355-358.
- Jeong, S., Ko, J., Won, J. and Lee, K. (2015), "Bearing capacity analysis of open-ended piles considering the degree of soil plugging", Soils Found., 55(5), 1001-1014. https://doi.org/10.1016/j.sandf.2015.06.007.
- Jesmani, M., Nabavi, S.H. and Kamalzare, M. (2014), "Numerical analysis of buckling behavior of concrete piles under axial load embedded in sand", Arab J. Sci. Eng., 39(4), 2683-2693. https://doi.org/10.1007/s13369-014-0970-5.
- Kondner, R.L. (1963), "Hyperbolic stress-strain response: cohesive soils", J. Soil Mech. Found. Div. (ASCE), 89(1), 115-143. https://doi.org/10.1061/JSFEAQ.0000479
- Kumar Khan, A. and Pise, P.J. (1997), "Dynamic behaviour of curved piles", Comput. Struct., 65(6), 795-807. https://doi.org/10.1016/s0045-7949(97)00043-6.
- Lee, J.H. and Salgado, R. (1999), "Determination of pile base resistance in sands", J. Geotech. Geoenviron. Eng., 125(8), 673-683. https://doi.org/10.1061/(asce)1090-0241(1999)125:8(673).
- Nadeem, M., Chakraborty, T. and Matsagar, V. (2015), "Nonlinear buckling analysis of slender piles with geometric imperfections", J. Geotech. Geoenviron. Eng., 141(1), 06014014. https://doi.org/10.1061/(asce)gt.1943-5606.0001189.
- Meyerhof, G.G. (1976), "Bearing capacity and settlement of pile foundations". J. Geotech. Eng. Div. (ASCE), 102(3), 195-228. https://doi.org/10.1061/AJGEB6.0000243
- Owen, D.R.J. and Hinton, E. (1986), Finite Elements in Plasticity: Theory and Practice, Pine ridge Press Limited, Swansea, Wales, UK.
- Paik, K., Lee, J. and Kim, D. (2011), "Axial response and bearing capacity of tapered piles in sandy soil", Geotech. Test. J., 34(2), 122-130. https://doi.org/10.1520/gtj102761.
- Ramirez-Henao, A.F. and Paul Smith-Pardo, J. (2015), "Elastic stability of pile-supported wharves and piers", Eng. Struct., 97, 140-151. https://doi.org/10.1016/j.engstruct.2015.04.007.
- Ren, Q.X., Hou, C., Lam, D. and Han, L.H. (2014), "Experiments on the bearing capacity of tapered concrete filled double skin steel tubular (CFDST) stub columns", Steel Compos. Struct., 17(5), 667-686. https://doi.org/10.12989/scs.2014.17.5.667.
- Rezaiee, M.P. and Mazindrani, Z.H. (1990), "Optimal capacity of axially loaded bent pile", Amirkabir J. Sci. Technol., 4(15), 65-78.
- Shields, D.R. (2007), "Buckling of micropiles", J. Geotech. Geoenviron. Eng., 133(3), 334-337. https://doi.org/10.1061/(asce)1090-0241(2007)133:3(334).
- Singularities (2015), Singularities in Finite Element Models: Dealing with Red Spots; COMSOL Blog, https://www.comsol.com/blogs/singularities-in-finite-element-models-dealing-with-red-spots/.
- Tomlinson, M. and Woodward, J. (2014), Pile Design and Construction Practice, CRC Press, Taylor & Francis Group, London, UK.
- Trochanis, A.M., Bielak, J. and Christiano, P.P. (1991), "Three-dimensional nonlinear study of piles", J. Geotech. Eng. ASCE, 117(3), 429-447. https://doi.org/10.1061/(asce)0733-9410(1991)117:3(429).
- Veiskarami, M., Eslami, A. and Kumar, J. (2011), "End-bearing capacity of driven piles in sand using the stress characteristics method: analysis and implementation", Can. Geotech. J., 48(10), 1570-1586. https://doi.org/10.1139/t11-057.
- Wojciechowski, M. (2018), "A note on the differences between Drucker-Prager and Mohr-Coulomb shear strength criteria", Studia Geotech. et Mech., 40(3), 163-169. https://doi.org/10.2478/sgem-2018-0016.
- Wood, D.M. (2007), Soil Behaviour and Critical State Soil Mechanics, Cambridge University Press, Cambridge, UK.
- Zhang, X., Tang, L., Ling, X. and Chan, A. (2020), "Critical buckling load of pile in liquefied soil", Soil Dyn. Earthq. Eng., 135, 106197. https://doi.org/10.1016/j.soildyn.2020.106197.