DOI QR코드

DOI QR Code

Dynamic mechanism of rock mass sliding and identification of key blocks in multi-fracture rock mass

  • Jinhai Zhao (State Key Laboratory Breeding Base for Mining Disaster Prevention and Control, Shandong University of Science and Technology) ;
  • Qi Liu (State Key Laboratory Breeding Base for Mining Disaster Prevention and Control, Shandong University of Science and Technology) ;
  • Changbao Jiang (State Key Laboratory Breeding Base for Mining Disaster Prevention and Control, Shandong University of Science and Technology) ;
  • Zhang Shupeng (Shandong Dongyue Energy Co., Ltd. ) ;
  • Zhu Weilong (State Key Laboratory Breeding Base for Mining Disaster Prevention and Control, Shandong University of Science and Technology) ;
  • Ma Hailong (State Key Laboratory Breeding Base for Mining Disaster Prevention and Control, Shandong University of Science and Technology)
  • Received : 2022.03.21
  • Accepted : 2023.01.16
  • Published : 2023.02.25

Abstract

There are many joint fissures distributed in the engineering rock mass. In the process of geological history, the underground rock mass undergoes strong geological processes, and undergoes complex geological processes such as fracture breeding, expansion, recementation, and re-expansion. In this paper, the damage-stick-slip process (DSSP), an analysis model used for rock mass failure slip, was established to examine the master control and time-dependent mechanical properties of the new and primary fractures of a multi-fractured rock mass under the action of stress loading. The experimental system for the recemented multi-fractured rock mass was developed to validate the above theory. First, a rock mass failure test was conducted. Then, the failure stress state was kept constant, and the fractured rock mass was grouted and cemented. A secondary loading was applied until the grouted mass reached the intended strength to investigate the bearing capacity of the recemented multi-fractured rock mass, and an acoustic emission (AE) system was used to monitor AE events and the update of damage energy. The results show that the initial fracture angle and direction had a significant effect on the re-failure process of the cement rock mass; Compared with the monitoring results of the acoustic emission (AE) measurements, the master control surface, key blocks and other control factors in the multi-fractured rock mass were obtained; The triangular shaped block in rock mass plays an important role in the stress and displacement change of multi-fracture rock mass and the long fissure and the fractures with close fracture tip are easier to activate, and the position where the longer fractures intersect with the smaller fractures is easier to generate new fractures. The results are of great significance to a multi-block structure, which affects the safety of underground coal mining.

Keywords

Acknowledgement

This study was funded by National Natural Science Foundation of China (52104203), Shandong Province Natural Science Foundation Project (ZR2020QE128, ZR2020ME102, ZR2021ME138).

References

  1. Blum, P., Mackay, R., Riley, M.S., Finkel, M., Barcelo, D., Barth, J.A.C. and Grathwohl, P. (2009), "Stochastic simulations of regional scale advective transport in fractured rock masses using block upscaled hydro-mechanical rock property data", J. Hydrology, 369(3), 318-325. https://doi.org/10.1016/j.jhydrol.2009.02.009.
  2. Bobet, A. and Einstein, H.H. (1998), "Fracture coalescence in rock-type material under uniaxial and biaxial compression", Int. J. Rock Mech. Min. Sci., 35(7), 863-888. https://doi.org/10.1016/S0148-9062(98)00005-9.
  3. Castro-Filgueira, U., Alejano, L.R., Arzua, J. and Ivars, D.M. (2017), "Sensitivity analysis of the micro-parameters used in a PFC analysis towards the mechanical properties of rocks", Proc. Eng., 191, 488-495. https://doi.org/10.1016/j.proeng.2017.05.208.
  4. Chen, L., Meng, X., Gao, Z., Wang, X. and Jin, J. (2011), "Analysis on spalling mechanism of coal wall law for fully mechanized high cutting coal mining face", Coal Sci. Technol., 39(5), 18-24.
  5. Cho, N., Martin, C.D. and Sego, D.C. (2007), "A clumped particle model for rock", Int. J. Rock Mech. Min. Sci., 44(7), 97-1010. https://doi.org/10.1016/j.ijrmms.2007.02.002.
  6. Feng, F., Li, X.B., Rostami, J., Peng, D.X., Li, D.Y. and Du, K. (2019a), "Numerical investigation of hard rock strength and fracturing under polyaxial compression based on Mogi-Coulomb failure criterion", Int. J. Geomech., 19(4), 040190051. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001352.
  7. Ghyasvand, S., Fahimifar, A., Nejad, F.M. (2022), "On the optimum design of reinforcement systems for old masonry railway tunnels", Geomech. Eng., 28(2), 145-155. https://doi.org/10.12989/gae.2022.28.2.145.
  8. Gomez-Hernandez, J.J., Hendricks Franssen, H.J. and Cassiraga, E.F. (2001), "Stochastic analysis of flow response in a three-dimensional fractured rock mass block", Int. J. Rock Mech. Min. Sci., 38(1), 31-44. https://doi.org/10.1016/s1365-1609(00)00062-9.
  9. Guo, W., Zhao, J., Yin, L. and Kong, D. (2017), "Simulating research on pressure distribution of floor pore water based on fluid-solid coupling", Arabian J. Geosci., 10, 1-14. https://doi.org/10.1007/s12517-016-2770-6.
  10. Hadi, H., Alireza, K. and Mohammad, F.M. (2015), "Fracture analyses of different pre-holed concrete specimens under compression", Acta Mech. Sin., 31(6), 855-870. https://doi.org/10.1007/s10409-015-0436-3.
  11. Hoek, E. and Bray, J.W. (2005), "Rock slope engineering", 4th Ed., New York: Spon Press.
  12. Hu, B., Yang, S. and Tian, W. (2019), "Creep-permeability behavior of sandstone considering thermal-damage", Geomech. Eng., 18(1), 71-83. https://doi.org/10.12989/gae.2019.18.1.071.
  13. Ibishi, G., Genis, M. and Yavuz, M. (2022), "Post-pillars design for safe exploitation at Trepca hard rock mine (Kosovo) based on numerical modeling", Geomech. Eng., 28(5), 463-475. https://doi.org/10.12989/gae.2022.28.5.463.
  14. Jiang, Q., Liu, X., Wei, W. and Zhou, C. (2013), "Wedge stability analysis for rock slope and search for critical slip surfaces", Chinese J. Rock Mech. Eng., 32(1), 24-33.
  15. Karatela, E. and Taheri, A. (2018), "Three-dimensional hydromechanical model of borehole in fractured rock mass using discrete element method", J Nat Gas Sci Eng., 53, 263-275. https://doi.org/10.1016/j.jngse.2018.02.032.
  16. Katcoff, C.Z. and Graham-Brady, L.L. (2014), "Modeling dynamic brittle behavior of materials with circular flaws or pores", Int. J. Solids Struct., 51(3-4), 754-766. https://doi.org/10.1016/ j.ijsolstr.2013.11.004.
  17. Kim, E., Garcia, A. and Changani, H. (2018), "Fragmentation and energy absorption characteristics of Red, Berea and Buff sandstones based on different loading rates and water contents", Geomech. Eng., 4(2), 151-159. https://doi.org/10.12989/gae.2018.4.2.151.
  18. Kim, J.S., Kim, G.Y., Baik. M.H., Finsterle, S. and Cho, G.C. (2019), "A new approach for quantitative damage assessment of in-situ rock mass by acoustic emission", Geomech. Eng., 18(1), 11-20. https://doi.org/10.12989/gae.2019.18.1.011.
  19. Komurlu, E., Kesimal, A. and Demir, S. (2016), "Experimental and numerical analyses on determination of indirect (splitting) tensile strength of cemented paste backfill materials under different loading apparatus", Geomech. Eng., 10(6), 775-791. https://doi.org/10.12989/ gae.2016.10.6.775.
  20. Kumsar, H.,Aydan, O. and Ulusay, R. (2000), "Dynamic and static stability assessment of rock slopes against wedge failures", Rock Mech. Rock Eng., 33(1), 31-51. https://doi.org/10.1007/s006030050003.
  21. Lawal, A.I., Kwon, S., Aladejare, A.E. and Oniyide, G.O. (2022), "Prediction of the static and dynamic mechanical properties of sedimentary rock using soft computing methods", Geomech. Eng., 28(3), 313-324. https://doi.org/10.12989/gae.2022.28.3.313.
  22. Li Z., Dou L., Lu, Z., Lu, X. and Wang, G. (2010), "Study of the fault slide destabilization induced by coal mining", J. Min. Saf. Eng., 27(4), 499-504.
  23. Li, L.P., Chen, D.Y., Li, S.C., Shi, S.S., Zhang, M.G. and Liu, H.L. (2017), "Numerical analysis and fluid-solid coupling model test of filling-type fracture water inrush and mud gush", Geomech. Eng., 13(6), 1011-1025. https://doi.org/10.12989/gae.2017.13.6.1011.
  24. Li, X.B., Feng, F., Li, D.Y., Du, K., Ranjith, P.G. and Rostami, J. (2018), "Failure characteristics of granite influenced by sample height-to-width ratios and intermediate principal stress under true-triaxial unloading conditions", Rock Mech. Rock Eng., 51, 1321-1345. https://doi.org/10.1007/s00603-018-1414-4.
  25. Li, Z., Dou, L., M, Z., Cao, A. and Gong, S. (2008), "Effect of fault on roof rock burst", J. Min. Saf. Eng., 25(2), 154-163.
  26. Lisjak, A. and Grasselli, G. (2014), "A review of discrete modeling techniques for fracturing processes in discontinuous rock mass", J. Rock Mech. Geotech. Eng., 6(4), 301-314. https://doi.org/10.1016/j.jrmge.2013.12.007.
  27. Liu, C., Huang, B., Chang, X., Wang, J. and Wei, M. (2008), "Study on tip to face coal and rock stability control of fully mechanized stepped large cutting height mining in extremely soft thick seam", J. China Univ. Min. Technol., 37(6), 734-739.
  28. Lv, H.Y., Tang, Y.S., Zhang, L.F., Cheng, Z.B. and Zhang, Y.N. (2019), "Analysis for mechanical characteristics and failure models of coal specimens with non-penetrating single crack", Geomech. Eng., 17(4), 355-365. https://doi.org/10.12989/gae.2019.17.4.355.
  29. Mahmoodzadeh, A., Mohammadi, M., Abdulhamid, S., Nariman, A., Hunar, Farid Hama; Ibrahim, Hawkar Hashim; Rashidi, Shima(2022), "Forecasting tunnel path geology using Gaussian process regression", Geomech. Eng., 28(4), 359-374, https://doi.org/10.12989/gae.2022.28.4.359.
  30. Maruvanchery, V. and Kim, E. (2017), "Effects of water on rock fracture properties: Studies of mode I fracture toughness", crack propagation velocity, and consumed energy in calcite-cemented sandstone", Geomech. Eng., 17(1), 57-67. https://doi.org/10.12989/gae.2019.17.1.057.
  31. Meng, Z., Peng, S. and Li, H. (2001), "Changes of the physical and mechanical properties of normal fault near coal and its influence on the rock pressure distribution", J. China Coal Soc., 26(6), 561-566.
  32. Morgan, S.P. and Einstein, H.H. (2017), "Cracking processes affected by bedding planes in Opalinus shale with flaw pairs", Eng. Fract. Mech., 176, 213-234. https://doi.org/10.1016/j.engfracmech.2017.03.003.
  33. Rastegarnia, A., Ghafoorri, M., Moghaddas, N.H., Lashkaripour, G.R. and Shojaei, H. (2022), "Application of cuttings to estimate the static characteristics of the dolomudstone rocks", Geomech. Eng., 29(1), 65-77. https://doi.org/10.12989/gae.2022.29.1.065.
  34. Samanta, M., Punetha, P. and Sharma, M. (2018), "Effect of roughness on interface shear behavior of sand with steel and concrete surface", Geomech. Eng., 14(4), 387-398. https://doi.org/10.12989/gae.2018.14.4.387.
  35. Sammis, C.G. and Ashby, M.F. (1986), "The failure of brittle porous solids under compressive stress states", Acta Metall., 34(3), 511-526. https://doi.org/10.1016/0001-6160(86)90087-8.
  36. Shi Genhua (1981) "Geometrical approach of rock mass stability analysis", Science in China, (4), 487-495.
  37. Shi, G. (1977), "Stereographic method of stability analysis of rock mass", Science in China, (3), 269-271.
  38. Tasdemir, M.A., Maji, A.K. and Shah, S.P. (1989), "Crack propagation in concrete under compression", J. Eng. Mech., 116(5), 1058-1076. https://doi.org/10.1061/(asce)0733-9399(1990)116:5(1058).
  39. Vaziri, M.R., Tavakoli, H. And Bahaaddini, M. (2022), "2D numerical study of the mechanical behaviour of non-persistent jointed rock masses under uniaxial and biaxial compression tests", Geomech. Eng., 28(2), 117-133. https://doi.org/10.12989/gae.2022.28.2.117.
  40. Wang, J., Liu, H. and Li, T. (2007), "Study on numerical simulation of dynamic risk regionalization during exploitation approaching to faults", Chinese J. Rock Mech. Eng., 26(1), 28-35.
  41. Wang, J., Yang, Y. and Kong, D. (2016), "Failure mechanism and control technology of Longwall coal face in large-cutting-height mining method", Int. J. Min. Sci. Technol., 26(1), 111-118. https://doi.org/10.1016/j.ijmst.2015.11.018.
  42. Wang, Q., Gao, H., Yu, H., Jiang, B. and Liu, B. (2019), "Method for measuring rock mass characteristics and evaluating the grouting-reinforced effect based on digital drilling", Rock Mech. Eng. Rock, 52(3), 841-851. https://doi.org/10.1007/s00603-018-1624-9.
  43. Xiao, G.F. and Chen, C.X. (2018), "Simulation of progressive failure process and stability analysis method for rock block", Rock Soil Mech., 39(8), 292-301. https://doi.org/10.16285/j.rsm.2017.2428.
  44. Xing, H.L., Makinouchi, A. and Mora, P. (2007), "Finite element modeling of interacting fault systems", Physics of the Earth Interiors Planetary, 163(1-4), 106-121. https://doi.org/10.1016/j.pepi.2007.05.006.
  45. Xing, H.L., Yu, W. and Zhang, J. (2009), "3D mesh generation in geocomputing", Chapter II in Advances in Geocomputing, Springer-Verlag GmbH, 27-64. https://doi.org/10.1007/978-3-540-85879-9_2.
  46. Xue, Y.C., Sun, W.B. and Wu, Q.S. (2020), "The influence of magmatic rock thickness on fracture and instability law of mining surrounding rock", Geomech. Eng., 20(6), 547-556. https://doi.org/10.12989/gae.2020.20.6.547.
  47. Yang, J.,Zuo, J.,Sun, K.,Meng, B. and Lin, X.(2011), "Insitu observation and numerical analysis of surface subsidence of high working face with multi-fault induced by fully mechanized mining activity", Chinese J. Rock Mech. Eng., 30(6), 1216-1224. https://doi.org/10.1007/s12583-011-0163-z.
  48. Yang, P., Liu, C. and Wu, F. (2012), "Breakage and falling of a high coal face in a thick mined seam", J. China Univ. Min. Technol., 41(3), 372-377. https://doi.org/10.1007/s11783-011-0280-z.
  49. Yossef, H.H. (2003), "Keyblock stability in seismically active rock slopes-Snake Path Cliff", Masada. J. Geotech. Geoenviron. Eng., 129(8), 697-705. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:8(697).
  50. Yuan, Y., Tu, S., Ma, X., Sun, L. and Bai, Q. (2012), "Coal wall stability of fully mechanized working face with great mining height in"three soft" coal seam and its control technology", J. Min. Saf. Eng., 29(1), 21-25.
  51. Zhao, J., Chen, J., Xing, H., Zhihao, Z. and Zhang, X. (2022a), "Dynamic mechanical response and movement evolution characteristics of fault systems in the coal mining process", Pure Appl. Geophys., https://doi.org/10.1007/s00024-021-02905-w
  52. Zhao, J., Liu, Q., Jiang, C. and Wang, D. (2022b), "Application of rock mass index in the prediction of mine water inrush and grouting quantity", Geomech. Eng., 30(6), 503-515. https://doi.org/10.12989/gae.2022.30.6.503.
  53. Zhao, J.H., Jiang, N., Yin, L.M. and Bai, L.Y. (2018), "The effects of mining subsidence and drainage improvements on a waterlogged area", Bull. Eng. Geol. Environ., 78(5), 3815-3831. https://doi.org/10.1007/ s10064-018-1356-9
  54. Zhao, J.H., Yin, L.M. and Guo, W.J. (2018), "Stress- seepage coupling of cataclastic rock masses based on digital image technologies", Rock Mech. Rock Eng., 51(8), 2355-2372. https://doi.org/10.1007/s00603-018-1474-5.
  55. Zhou, F., Sun, W.B., Shao, J.L., Kong, L.J. and Geng, X.Y. (2020), "Experimental study on nano silica modified cement base grouting reinforcement materials", Geomech. Eng., 20(1), 67-73. https://doi.org/10.12989/gae.2020.20.1.067.