DOI QR코드

DOI QR Code

Seismic retrofit of framed structures using a steel frame assembly

  • Michael Adane (Department of Global Smart City, Sungkyunkwan University) ;
  • Seungho Chun (Department of Global Smart City, Sungkyunkwan University) ;
  • Jinkoo Kim (Department of Global Smart City, Sungkyunkwan University)
  • Received : 2021.11.26
  • Accepted : 2023.03.11
  • Published : 2023.03.25

Abstract

This study aimed to develop a seismic retrofit technique using a steel frame which can be easily transported and assembled on site. This enables the retrofit steel frame to be easily attached to an existing structure minimizing the unwanted gap between the structure and the steel frame assembly. A one-story one-bay RC frame was tested with and without seismic retrofit using the proposed steel frame to verify the seismic retrofit effect of the proposed system, and an analysis model was developed in Opensees for seismic performance evaluation of a case study soft first-story model structure retrofitted with the developed steel frame assembly. Seismic performance of the model structure was also evaluated considering soil structure interaction effect. The experimental study confirmed that the proposed seismic retrofit system can be applied effectively to improve the seismic performance of framed structures. Time history analysis results of the model structure showed that the proposed steel frame assembly was effective in increasing the seismic load resisting capacity of the soft first-story structure. However more steel frame assemblies were required to satisfy the given performance limit state of the model structure located on weak soil due to the negative soil-structure interaction effect.

Keywords

Acknowledgement

This research was supported by a grant(2021-MOIS35-003) of 'Policy-linked Technology Development Program on Natural Disaster Prevention and Mitigation' funded by Ministry of Interior and Safety (MOIS, Korea).

References

  1. ACI (2011), Building Code Requirements for Structural Concrete (ACI 318-11) In American Concrete Institute.
  2. Amini, F., Bitaraf, M., Nasab, M.S.E. and Javidan, M.M. (2018), "Impacts of soil-structure interaction on the structural control of nonlinear systems using adaptive control approach", Eng. Struct., 157, 1-13. https://doi.org/10.1016/j.engstruct.2017.11.071.
  3. ASCE (2013), Seismic Evaluation and Retrofit Rehabilitation of Existing Buildings, ASCE Reston, VA, USA.
  4. ASCE (2017), Minimum Design Loads and Associated Criteria for Buildings and Other Structures, ASCE Reston, VA, USA.
  5. Askouni, P.K. and Karabalis, D.L. (2021), "SSI effects on the redistribution of seismic forces in one-storey r/c buildings", Earthq. Struct., 20(3), 261-78. https://doi.org/10.12989/eas.2021.20.3.261.
  6. Bahrani, M.K., Nooralizadeh, A., Usefi, N. and Zargaran, M. (2019),"Seismic evaluation and partial retrofitting of concrete bridge bents with defect details", Latin American J. Solids Struct., 16, https://doi.org/10.1590/1679-78255158.
  7. Beigi, H.A., Christopoulos, C., Sullivan, T. and Calvi, G.M. (2014), "Gapped-inclined braces for seismic retrofit of soft-story buildings", J. Struct. Eng. 140(11), 4014080. https://ascelibrary.org/doi/10.1061/(ASCE)ST.1943-541X.
  8. Benavent-Climent, A. and Mota-Paez, S. (2017), "Earthquake retrofitting of R/C frames with soft first story using hysteretic dampers: energy-based design method and evaluation", Eng. Struct., 137, 19-32. https://doi.org/10.1016/j.engstruct.2017.01.053.
  9. Boulanger, R.W. (2018), "The pysimple1, tzsimple1, and qzsimple1 material models, documentation for the opensees platform, 2000", Http://Opensees.Berkeley.Edu.
  10. Dereje, J.A., Eldin, M.N. and Kim, J. (2021), "Seismic retrofit of a soft first story structure using an optimally designed post-tensioned pc frame", Earthq. Struct. 20(6), 627-37. https://doi.org/10.12989/eas.2021.20.6.000.
  11. Azandariani, M.G., Rousta, A.M., Usefvand, E., Abdolmaleki, H. and Azandariani, A.G. (2021), "Improved seismic behavior and performance of energy-absorbing systems constructed with steel rings", Structures, 29, 534-548. https://doi.org/10.1016/j.istruc.2020.11.041.
  12. Javidan, M.M. and Kim, J. (2019), "Seismic retrofit of soft-first-story structures using rotational friction dampers", J. Struct. Eng., 145(12), 4019162. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002433.
  13. Javidan, M.M. and Kim, J. (2020), "Steel hysteretic column dampers for seismic retrofit of soft-first-story structures", Steel Compos. Struct., 37, 259-272. https://doi.org/10.12989/scs.2020.37.3.259.
  14. Javidan, M.M., Chun, S. and Kim, J. (2021), "Experimental study on steel hysteretic column dampers for seismic retrofit of structures", Steel Compos. Struct., 40, 495-509. https://doi.org/10.12989/scs.2021.40.4.495.
  15. Javidan, M.M., Nasab, M.S.E. and Kim, J. (2021), "Full-scale tests of two-story RC frames retrofitted with steel plate multi-slit dampers", Steel Compos. Struct., 39, 645-664. https://doi.org/10.12989/scs.2021.39.5.645.
  16. Jayalekshmi, B.R. and Chinmayi, H.K. (2016), "Seismic analysis of shear wall buildings incorporating site specific ground response", Struct. Eng. Mech. Int. J., 60(3), 433-53. https://doi.org/10.12989/sem.2016.60.3.433.
  17. Kim, J., Choi, H. and Chung, L. (2004), "Energy-based seismic design of structures with buckling-restrained braces", Steel Compos. Struct., 4(6), 437-52. https://doi.org/10.12989/scs.2004.4.6.437.
  18. Kim, J., Park, J. and Kim, S.D. (2009), "Seismic behavior factors of buckling-restrained braced frames", Struct. Eng. Mech., 33(3), 261-84. https://doi.org/10.12989/sem.2009.33.3.261.
  19. Kim, J., Kim, M. and Eldin, M.N. (2017), "Optimal distribution of steel plate slit dampers for seismic retrofit of structures", Steel Compos. Struct., 25, 473-484. https://doi.org/10.12989/scs.2017.25.4.473.
  20. Lee, J. and Kim, J. (2015), "Seismic performance evaluation of moment frames with slit-friction hybrid dampers", Earthq. Struct., 9(6), 1291-1311. https://doi.org/10.12989/eas.2015.9.6.1291
  21. Lee, S.K., Park, J.H., Moon, B.W., Min, K.W., Lee, S.H. and Kim, J. (2008), "Design of a bracing-friction damper system for seismic retrofitting", Smart Struct. Syst., 4(5), 685-96. https://doi.org/10.12989/sss.2008.4.5.685.
  22. Lignos, D.G. and Krawinkler, H. (2013), "Development and utilization of structural component databases for performance-based earthquake engineering", J. Struct. Eng., 139(8), 1382-94. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000646.
  23. Mazzoni, S., McKenna, F., Scott, M.H. and Fenves, G.L. (2006), "OpenSees command language manual", Pacific Earthquake Engineering Research (PEER) Center 264: 137-58.
  24. Mohammadi, M., Kafi, M.A., Kheyroddin, A. and Ronagh, H. (2020), "Performance of innovative composite buckling-restrained fuse for concentrically braced frames under cyclic loading", Steel Compos. Struct., 36, 163-77. https://doi.org/10.12989/scs.2020.36.2.163.
  25. Oncu-Davas, S. and Alhan, C. (2019), "Probabilistic behavior of semi-active isolated buildings under pulse-like earthquakes", Smart Struct. Syst., 23(3), 227-242. https://doi.org/10.12989/sss.2019.23.3.227.
  26. Naeem, A. and Jinkoo, K. (2018), "Seismic retrofit of a framed structure using damped cable system", Steel Compos. Struct., 29(3), 287-299. https://doi.org/10.12989/scs.2018.29.3.287.
  27. Nasab, M.S.E., Javidan, M.M., Chun, S. and Kim, J. (2021), "Experimental study on seismic retrofit of a rc frame using viscoelastic dampers", Structures, 34, 771-86. https://doi.org/10.1016/j.istruc.2021.08.044.
  28. Van Nguyen, Q., Fatahi, B. and Hokmabadi, A.S. (2016), "The effects of foundation size on the seismic performance of buildings considering the soil-foundation-structure interaction", Struct. Eng. Mech., 58(6), http://dx.doi.org/10.12989/sem.2016.58.6.1045.
  29. Noureldin, M., Ahmed, S. and Kim, J. (2021), "Self-centering steel slotted friction device for seismic retrofit of beam-column joints", Steel Compos. Struct., 41, 13-30. https://doi.org/10.12989/scs.2021.41.1.013.
  30. Noureldin, M., Adane, M. and Kim, J. (2021), "Seismic fragility of structures with energy dissipation devices for mainshock-aftershock events", Earthq. Struct., 21(3), 219-30. https://doi.org/10.12989/eas.2021.21.3.219.
  31. Park, J., Lee, J. and Kim, J. (2012), "Cyclic test of buckling restrained braces composed of square steel rods and steel tube", Steel Compos. Struct., 13(5), 423-36. https://doi.org/10.12989/scs.2012.13.5.423.
  32. Raychowdhury, Prishati (2008), Nonlinear Winkler-Based Shallow Foundation Model for Performance Assessment of Seismically Loaded Structures, University of California, San Diego.
  33. Sahoo, D.R. and Rai, D.C. (2013), "Design and evaluation of seismic strengthening techniques for reinforced concrete frames with soft ground story", Eng. Struct., 56, 1933-44. https://doi.org/10.1016/j.engstruct.2013.08.018.
  34. Xu, Z.D. (2009), "Horizontal shaking table tests on structures using innovative earthquake mitigation devices", J. Sound Vib., 325, 34-48. https://doi.org/10.1016/j.jsv.2009.03.019.
  35. Xu, Z.D., Ge, T. and Liu, J. (2020), "Experimental and theoretical study of high-energy dissipation-viscoelastic dampers based on acrylate-rubber matrix", J. Eng. Mech., 146(6), 4020057. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001802.
  36. Xu, Z.D., Xu, F.H. and Chen, X. (2016), "Vibration suppression on a platform by using vibration isolation and mitigation devices", Nonlinear Dynam., 83(3), 1341-53. https://doi.org/10.1007/s11071-015-2407-4.
  37. Yousef-beik, S.M.M., Veismoradi, S., Zarnani, P. and Quenneville, P. (2020), "A new self-centering brace with zero secondary stiffness using elastic buckling", J. Constr. Steel Res., 169, 106035. https://doi.org/10.1016/j.jcsr.2020.106035.