과제정보
The research described in this paper was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A2B5B01002577).
참고문헌
- ABAQUS (2014), ABAQUS/Standard Analysis User's Manual, Version 6.14, USA.
- ANSYS (2016), ANSYS Fluent v.17.0.0 User Guide, Canonsburg, USA.
- ASCE (1997), Structural Applications of Steel Cables for Buildings, ANSI/ASCE Standard. New York, ASCE 19-96.
- Association, J.S.S. (1994), Cable Material Specification Used in Structure. Japan.
- Atmaca, B. (2021), "Determination of proper post-tensioning cable force of cable-stayed footbridge with TLBO algorithm", Steel Compos. Struct., 40(6), 805-816. https://doi.org/10.12989/scs.2021.40.6.805.
- Bazant, Z.P. and Yu, Q. (2013), "Relaxation of prestressing steel at varying strain and temperature: viscoplastic constitutive relation", J. Eng. Mech., 139(7), 814-823. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000533.
- Brnic, J., Brcic, M., Krscanski, S., Lanc, D. and Chen, S., (2019), "Uniaxial fatigue, creep and stress-strain responses of steel 30CrNiMo8", Steel Compos. Struct., 31(4), 409-416. https://doi.org/10.12989/scs.2019.31.4.409.
- Carreno-Morelli, E., Urreta, S.E. and Schaller, R. (2000), "Mechanical spectroscopy of thermal stress relaxation at metalceramic interfaces in aluminum-based composites", Acta Mater., 48(18-19), 4725-4733. https://doi.org/10.1016/S1359-6454(00)00264-0.
- CECS212-2006 (2006), Technical Specification for Prestressed Steel Structures. China Planning Press, Beijing, China.
- Cesarek, P., Kramar, M. and Kolsek, J. (2018), "Effect of creep on behaviour of steel structural assemblies in fires", Steel Compos. Struct., 29(4), 423-435. https://doi.org/10.12989/scs.2018.29.4.423.
- Chen, D.L., Yang, P.F. and Lai, Y.S. (2012), "A review of threedimensional viscoelastic models with an application to viscoelasticity characterization using nanoindentation", Microelectron. Reliab., 52(3), 541-558. http://dx.doi.org/10.1016/j.microrel.2011.10.001
- Chen, Z., Liu, Z. and Sun, G. (2011), "Thermal behavior of steel cables in prestressed steel structures", J. Mater. Civ. Eng., 23(9), 1265-1271. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000293.
- Cluley, N.C. and Shepherd, R. (1996), "Analysis of concrete cable-stayed bridges for creep, shrinkage and relaxation effects", Comput. Struct., 58(2), 337-350. https://doi.org/10.1016/0045-7949(95)00131-Y.
- Comite Euro-International du Beton (1993), CEB-FIP model code 1990. London. London: Thomas Telford.
- Cooke, G.M.E. (1988), "An introduction to the mechanical properties of structural steel at elevated temperatures", Fire Saf. J., 13(1), 45-54. https://doi.org/10.1016/0379-7112(88)90032-X.
- European Committee for Standardization (CEN) (2006), Design of Steel Structures, Part 1-11: Design of Structures with Tension Components, Brussels, Belgium: BS EN1993-1-11.
- GB/T10120-2013 (2013), Metallic Materials-Tensile Stress Telaxation-Method of test. Beijing.China.
- Gou, H., Wang, W., Shi, X., Pu, Q. and Kang, R. (2018), "Behavior of steel-concrete composite cable anchorage system", Steel Compos. Struct., 26(1), 115-123. https://doi.org/10.12989/scs.2018.26.1.115.
- Hill, R.M. and Dissado, L.A. (1982), "The temperature dependence of relaxation processes", J. Phys. C. Solid State Phys., 15(25), 5171-5193. https://doi.org/10.1088/0022-3719/15/25/010.
- Hong, T.T., Kim, J.J., Thai, D.K. and Kim, S.E. (2022), "Development of automatic system for evaluating the stress redistribution in structural members of a steel cable - stayed bridge due to cable stress relaxation", Steel Compos. Struct., 44(6), 739-754. https://doi.org/10.12989/scs.2022.44.6.739.
- International Federation for Structural Concrete (2010), Fib Model Code for Concrete Structures, In How languages are learned (Vol. 11). Laussane, Swissland.
- ISO 15630-1 (2010), Steel for the Reinforcement and PreStressing of Concrete-Test Methods-Part 1: Reinforcing Bars, Wire Rod and Wire. Italian Board of Standardization (UNI).
- James, J.D., Spittle, J.A., Brown, S.G.R. and Evans, R.W. (2001), "A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures", Meas. Sci. Technol., 12(3), 1-15. https://doi.org/10.1088/0957-0233/12/3/201.
- Kmet, S. and L.H. (2004), "Non-linear rheology of tension structural element under single and variable loading history Part II: Creep of steel rope-examples and parametrical study", Struct. Eng. Mech., 18(5), 591-607. https://doi.org/10.12989/sem.2004.18.5.591
- Lian, Y. Da, Wang, X., Wang, J. and Wen, Z. (2022), "A new entropy-based metallic material stress relaxation engineering prediction method", Eng. Fail. Anal., 135, 106061. https://doi.org/10.1016/j.engfailanal.2022.106061.
- Liu, C.H., Au, F.T.K. and Lee, P.K.K. (2006), "Estimation of shrinkage effects on reinforced concrete podiums", HKIE Trans. Hong Kong Inst. Eng., 13(4), 33-43. https://doi.org/10.1080/1023697X.2006.10668059.
- Lomellini, P. (1992), "Williams-Landel-Ferry versus Arrhenius behaviour: polystyrene melt viscoelasticity revised", Polymer (Guildf)., 33(23), 4983-4989. https://doi.org/10.1016/0032-3861(92)90049-3.
- Livermore Software Technology Corporation (LSTC) (2015), LSDYNA Keyword User's Manual V971, Livermore, California.
- Nicholas, W.T. (2012), The Phenomenological Theory of Linear Viscoelastic Behavior: An Introduction. Springer Science & Business Media.
- Shakya, A.M. and Kodur, V.K.R. (2016), "Effect of temperature on the mechanical properties of low relaxation seven-wire prestressing strand", Constr. Build. Mater., 124, 74-84. https://doi.org/10.1016/j.conbuildmat.2016.07.080.
- Song, W.K. and Kim, S.E. (2007), "Analysis of the overall collapse mechanism of cable-stayed bridges with different cable layouts", Eng. Struct., 29(9), 2133-2142. https://doi.org/10.1016/j.engstruct.2006.11.005.
- Thai, H.T. and Kim, S.E. (2012), "Second-order inelastic analysis of cable-stayed bridges", Finite Elem. Anal. Des., 53, 48-55. https://doi.org/10.1016/j.finel.2011.07.002.
- Wang, W., Liu, B. and Kodur, V. (2013), "Effect of temperature on strength and elastic modulus of high-strength steel", J. Mater. Civ. Eng., 25(2), 174-182. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000600.
- Wang, X., Chen, Z., Liu, H. and Yu, Y. (2018), "Experimental study on stress relaxation properties of structural cables", Constr. Build. Mater., 175, 777-789. https://doi.org/10.1016/j.conbuildmat.2018.04.224.
- Zeren, A. and Zeren, M. (2003), "Stress relaxation properties of prestressed steel wires", J. Mater. Process. Technol., 141(1), 86-92. https://doi.org/10.1016/S0924-0136(03)00131-6.