DOI QR코드

DOI QR Code

An evaluation system for determining the stress redistribution of a steel cable-stayed bridge due to cable stress relaxation at various temperatures

  • Tien-Thang Hong (Department of Civil and Environmental Engineering, Sejong University) ;
  • Duc-Kien Thai (Department of Civil and Environmental Engineering, Sejong University) ;
  • Seung-Eock Kim (Department of Civil and Environmental Engineering, Sejong University)
  • Received : 2022.10.08
  • Accepted : 2023.03.21
  • Published : 2023.03.25

Abstract

This study developed an evaluation system to explore the effect of the environmental temperature on the stress redistribution produced by cable stress relaxation of structural members in a steel cable-stayed bridge. The generalized Maxwell model is used to estimate stress relaxation at different temperatures. The environmental temperature is represented using the thermal coefficients and temperature loads. The fmincon optimization function is used to determine the set of stress relaxation parameters at different temperatures for all cables. The ABAQUS software is employed to investigate the stress redistribution of the steel cable-stayed bridge caused by the cable stress relaxation and the environmental temperature. All of these steps are set up as an evaluation system to save time and ensure the accuracy of the study results. The developed evaluation system is then employed to investigate the effect of environmental temperature and cable type on stress redistribution. These studies' findings show that as environmental temperatures increased up to 40 ℃, the redistribution rate increased by up to 34.9% in some girders. The results also show that the cable type with low relaxation rates should be used in high environmental temperature areas to minimize the effect of cable stress relaxation.

Keywords

Acknowledgement

The research described in this paper was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A2B5B01002577).

References

  1. ABAQUS (2014), ABAQUS/Standard Analysis User's Manual, Version 6.14, USA.
  2. ANSYS (2016), ANSYS Fluent v.17.0.0 User Guide, Canonsburg, USA.
  3. ASCE (1997), Structural Applications of Steel Cables for Buildings, ANSI/ASCE Standard. New York, ASCE 19-96.
  4. Association, J.S.S. (1994), Cable Material Specification Used in Structure. Japan.
  5. Atmaca, B. (2021), "Determination of proper post-tensioning cable force of cable-stayed footbridge with TLBO algorithm", Steel Compos. Struct., 40(6), 805-816. https://doi.org/10.12989/scs.2021.40.6.805.
  6. Bazant, Z.P. and Yu, Q. (2013), "Relaxation of prestressing steel at varying strain and temperature: viscoplastic constitutive relation", J. Eng. Mech., 139(7), 814-823. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000533.
  7. Brnic, J., Brcic, M., Krscanski, S., Lanc, D. and Chen, S., (2019), "Uniaxial fatigue, creep and stress-strain responses of steel 30CrNiMo8", Steel Compos. Struct., 31(4), 409-416. https://doi.org/10.12989/scs.2019.31.4.409.
  8. Carreno-Morelli, E., Urreta, S.E. and Schaller, R. (2000), "Mechanical spectroscopy of thermal stress relaxation at metalceramic interfaces in aluminum-based composites", Acta Mater., 48(18-19), 4725-4733. https://doi.org/10.1016/S1359-6454(00)00264-0.
  9. CECS212-2006 (2006), Technical Specification for Prestressed Steel Structures. China Planning Press, Beijing, China.
  10. Cesarek, P., Kramar, M. and Kolsek, J. (2018), "Effect of creep on behaviour of steel structural assemblies in fires", Steel Compos. Struct., 29(4), 423-435. https://doi.org/10.12989/scs.2018.29.4.423.
  11. Chen, D.L., Yang, P.F. and Lai, Y.S. (2012), "A review of threedimensional viscoelastic models with an application to viscoelasticity characterization using nanoindentation", Microelectron. Reliab., 52(3), 541-558. http://dx.doi.org/10.1016/j.microrel.2011.10.001
  12. Chen, Z., Liu, Z. and Sun, G. (2011), "Thermal behavior of steel cables in prestressed steel structures", J. Mater. Civ. Eng., 23(9), 1265-1271. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000293.
  13. Cluley, N.C. and Shepherd, R. (1996), "Analysis of concrete cable-stayed bridges for creep, shrinkage and relaxation effects", Comput. Struct., 58(2), 337-350. https://doi.org/10.1016/0045-7949(95)00131-Y.
  14. Comite Euro-International du Beton (1993), CEB-FIP model code 1990. London. London: Thomas Telford.
  15. Cooke, G.M.E. (1988), "An introduction to the mechanical properties of structural steel at elevated temperatures", Fire Saf. J., 13(1), 45-54. https://doi.org/10.1016/0379-7112(88)90032-X.
  16. European Committee for Standardization (CEN) (2006), Design of Steel Structures, Part 1-11: Design of Structures with Tension Components, Brussels, Belgium: BS EN1993-1-11.
  17. GB/T10120-2013 (2013), Metallic Materials-Tensile Stress Telaxation-Method of test. Beijing.China.
  18. Gou, H., Wang, W., Shi, X., Pu, Q. and Kang, R. (2018), "Behavior of steel-concrete composite cable anchorage system", Steel Compos. Struct., 26(1), 115-123. https://doi.org/10.12989/scs.2018.26.1.115.
  19. Hill, R.M. and Dissado, L.A. (1982), "The temperature dependence of relaxation processes", J. Phys. C. Solid State Phys., 15(25), 5171-5193. https://doi.org/10.1088/0022-3719/15/25/010.
  20. Hong, T.T., Kim, J.J., Thai, D.K. and Kim, S.E. (2022), "Development of automatic system for evaluating the stress redistribution in structural members of a steel cable - stayed bridge due to cable stress relaxation", Steel Compos. Struct., 44(6), 739-754. https://doi.org/10.12989/scs.2022.44.6.739.
  21. International Federation for Structural Concrete (2010), Fib Model Code for Concrete Structures, In How languages are learned (Vol. 11). Laussane, Swissland.
  22. ISO 15630-1 (2010), Steel for the Reinforcement and PreStressing of Concrete-Test Methods-Part 1: Reinforcing Bars, Wire Rod and Wire. Italian Board of Standardization (UNI).
  23. James, J.D., Spittle, J.A., Brown, S.G.R. and Evans, R.W. (2001), "A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures", Meas. Sci. Technol., 12(3), 1-15. https://doi.org/10.1088/0957-0233/12/3/201.
  24. Kmet, S. and L.H. (2004), "Non-linear rheology of tension structural element under single and variable loading history Part II: Creep of steel rope-examples and parametrical study", Struct. Eng. Mech., 18(5), 591-607. https://doi.org/10.12989/sem.2004.18.5.591
  25. Lian, Y. Da, Wang, X., Wang, J. and Wen, Z. (2022), "A new entropy-based metallic material stress relaxation engineering prediction method", Eng. Fail. Anal., 135, 106061. https://doi.org/10.1016/j.engfailanal.2022.106061.
  26. Liu, C.H., Au, F.T.K. and Lee, P.K.K. (2006), "Estimation of shrinkage effects on reinforced concrete podiums", HKIE Trans. Hong Kong Inst. Eng., 13(4), 33-43. https://doi.org/10.1080/1023697X.2006.10668059.
  27. Lomellini, P. (1992), "Williams-Landel-Ferry versus Arrhenius behaviour: polystyrene melt viscoelasticity revised", Polymer (Guildf)., 33(23), 4983-4989. https://doi.org/10.1016/0032-3861(92)90049-3.
  28. Livermore Software Technology Corporation (LSTC) (2015), LSDYNA Keyword User's Manual V971, Livermore, California.
  29. Nicholas, W.T. (2012), The Phenomenological Theory of Linear Viscoelastic Behavior: An Introduction. Springer Science & Business Media.
  30. Shakya, A.M. and Kodur, V.K.R. (2016), "Effect of temperature on the mechanical properties of low relaxation seven-wire prestressing strand", Constr. Build. Mater., 124, 74-84. https://doi.org/10.1016/j.conbuildmat.2016.07.080.
  31. Song, W.K. and Kim, S.E. (2007), "Analysis of the overall collapse mechanism of cable-stayed bridges with different cable layouts", Eng. Struct., 29(9), 2133-2142. https://doi.org/10.1016/j.engstruct.2006.11.005.
  32. Thai, H.T. and Kim, S.E. (2012), "Second-order inelastic analysis of cable-stayed bridges", Finite Elem. Anal. Des., 53, 48-55. https://doi.org/10.1016/j.finel.2011.07.002.
  33. Wang, W., Liu, B. and Kodur, V. (2013), "Effect of temperature on strength and elastic modulus of high-strength steel", J. Mater. Civ. Eng., 25(2), 174-182. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000600.
  34. Wang, X., Chen, Z., Liu, H. and Yu, Y. (2018), "Experimental study on stress relaxation properties of structural cables", Constr. Build. Mater., 175, 777-789. https://doi.org/10.1016/j.conbuildmat.2018.04.224.
  35. Zeren, A. and Zeren, M. (2003), "Stress relaxation properties of prestressed steel wires", J. Mater. Process. Technol., 141(1), 86-92. https://doi.org/10.1016/S0924-0136(03)00131-6.