DOI QR코드

DOI QR Code

Experimental study on fatigue behavior of innovative hollow composite bridge slabs

  • Yang Chen (Department of Civil Engineering, Shanghai University) ;
  • Zhaowei Jiang (Department of Civil Engineering, Shanghai University) ;
  • Qing Xu (Department of Civil Engineering, Shanghai University) ;
  • Chong Ren (Department of Civil Engineering, Shanghai University)
  • Received : 2022.06.30
  • Accepted : 2023.03.12
  • Published : 2023.03.25

Abstract

In order to study the fatigue performance of the flat steel plate-lightweight aggregate concrete hollow composite bridge slab subjected to fatigue load, both static test on two specimens and fatigue test on six specimens were conducted. The effects of the arrangement of the steel pipes, the amplitude of the fatigue load and the upper limit as well as lower limit of fatigue load on failure performance were investigated. Besides, for specimens in fatigue test, strains of the concrete, residual deflection, bending stiffness, residual bearing capacity and dynamic response were analyzed. Test results showed that the specimens failed in the fracture of the bottom flat steel plate regardless of the arrangement of the steel pipes. Moreover, the fatigue loading cycles of composite slab were mainly controlled by the amplitude of the fatigue load, but the influences of upper limit and lower limit of fatigue load on fatigue life was slight. The fatigue life of the composite bridge slabs can be determined by the fatigue strength of bottom flat steel plate, which can be calculated by the method of allowable stress amplitude in steel structure design code.

Keywords

Acknowledgement

The research was sponsored by the National Natural Science Foundation of China (Program No.52108156), the Opening Fund of State Key Laboratory of Green Building in Western China (Project No. LSKF202215) and also supported by the Program for Innovative Research Team of Shanghai University.

References

  1. Ahn, J.H., Sim,C., Jeong, Y.J. and Kim, S.H. (2009), "Fatigue behavior and statistical evaluation of the stress category for a steel-concrete composite bridge deck", J. Constr. Steel Res., 65(2), 373-385. http://dx.doi.org/10.1016/j.jcsr.2008.04.007.
  2. Altoubat, S., Ousmane, H. and Barakat, S. (2015), "Effect of fibers and welded-wire reinforcements on the diaphragm behavior of composite deck slabs", Steel Compos. Struct., 19(1), 153-171. http://dx.doi.org/10.12989/scs.2015.19.1.153.
  3. Ding, N. and Shao, X.D. (2015), "Study on fatigue performance of light-weighted composite bridge deck", China Civ. Eng. J., 48(1), 74-81.
  4. Fujiyama, C. and Maekawa, K. (2011), "A Computational simulation for the damage mechanism of steel-concrete composite slabs under high cycle fatigue loads", J. Adv. Concr. Tec., 9(2), 193-204. http://dx.doi.org/10.3151/jact.9.193.
  5. GB 50017-2017 (2017), Standard for Design of Steel Structures, China Architecture and Building Press Beijing, China.
  6. He, Y.B., Shao, X.D., Liu, R., Li, W.W. and Zhou, X. (2019), "Study on static behavior of Twin I-steel-UHPC bridge deck composite girder of cable-stayed bridge", Bridge Constr., 49(1), 47-51.
  7. Higgins, C. and Mitchell, H. (2001), "Behavior of composite bridge decks with alternative shear connectors", J Bridge Eng., 6(1), 17-22. https://doi.org/10.1061/(ASCE)1084-0702(2001)6:1(17).
  8. Kataoka, M.N., Friedrich, J.T. and Debs, A.L.H.C.E. (2017), "Experimental investigation of longitudinal shear behavior for composite floor slab", Steel Compos. Struct., 23(3), 351-362. http://dx.doi.org/10.12989/scs.2017.23.3.351.
  9. Lam, D. (2008), "Capacities of headed stud shear connectors in composite steel beams with precast hollowcore slabs", Steel Constr., 63(9), 1160-1174. http://dx.doi.org/10.1016/j.jcsr.2006.11.012.
  10. Liu, R., Yang, Y. and Zhou, X. (2018), "Experimental study on fatigue performance of composite beam with steel-plate-concrete composite decks", Constr. Build. Mater., 188, 833-849. http://dx.doi.org/10.1016/j.conbuildmat.2018.08.108.
  11. Lu, P., Zhan, X. and Zhao, R. (2017), "Fatigue behaviour in fullscale laboratory tests of a composite deck slab with PBL reinforcement", J. S. Afr. Inst. Civ. Eng., 59(2), 11-18. http://dx.doi.org/10.17159/2309-8775/2017/v59n2a2.
  12. Ryu, H.K., Kim, Y.J. and Chang, S.P. (2007), "Crack control of a continuous composite two girder bridge with prefabricated slabs under static and fatigue loads", Eng. Struct., 29(6), 851-864. http://dx.doi.org/10.1016/j.engstruct.2006.06.021.
  13. Song, A., Wan, S., Jiang, Z. and Xu J. (2018), "Residual deflection analysis in negative moment regions of steel-concrete composite beams under fatigue loading", Constr. Build. Mater., 158, 50-60. http://dx.doi.org/10.1016/j.conbuildmat.2017.09.075.
  14. Su, Q., Yang, G. and Bradford, M.A. (2016), "Bearing capacity of perfobond rib shear connectors in composite girder bridges", J. Bridge Eng., 21(4), 06015009. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000865.
  15. Tong, Z.J. (2018), "Experiment and theoretical analysis on the mechanical properties of GFRP-concrete-steel composite beam bridge", S.E. Univ.
  16. Tong, Z.J., Huang, Q., Bao, W.G. and Wan, S.C. (2017), "Experimental investigation into static behavior of GFRPconcrete continuous deck", J.S. China Univ. Tech., 45(11), 31-40.
  17. Xue, D., Liu, Y., Yu, Z. and He, J. (2012), "Static behavior of multi-stud shear connectors for steel-concrete composite bridge", Steel Constr., 74(8), 1-7. https://doi.org/10.1016/j.jcsr.2011.09.017
  18. Yang, Y., Chen, Y., Yang, Y., and Zeng, S.S. (2019), "Investigation on mechanical performance of flat steel plate-lightweight aggregate concrete hollow composite slab", Steel Compos. Struct., 31(4), 329-340. http://dx.doi.org/10.12989/scs.2019.31.4.329.
  19. Yoshitake, I., Kuroda, Y., Watada, Y. and Kim, Y.J. (2016), "Fatigue performance of steel-concrete composite slabs with a cementitious adhesive subjected to water leakage", Constr. Build. Mater., 111, 22-29. http://dx.doi.org/10.1016/j.conbuildmat.2016.02.048.
  20. Yoshitake, I., Ogawa, A., Kim, Y.J. and Ogami, E. (2013), "Composite deck having transverse stiffeners bonded with a cementitious adhesive subjected to moving-wheel fatigue", J. Bridge Eng., 18(9), 848-857. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000437
  21. Zhu, J.S., Chen, C. and Han, Q.H. (2014), "Vehicle-bridge coupling vibration analysis based on fatigue reliability prediction of prestressed concrete highway bridge", Struct. Eng. Mech., 49(2), 203-223. http://dx.doi.org/10.12989/sem.2014.49.2.203.