Acknowledgement
This research was supported by the National Research Foundation of Korea (NRF) funded by the Korean government (MSIT) (No. 2021R1A2B5B01002577 and No. 2019R1A4A1021702).
References
- Avci Karatas, C. (2019), "Prediction of ultimate load capacity of concrete-filled steel tube columns using multivariate adaptive regression splines (MARS)" , Steel Compos. Struct., 33(4), 583-594. https://doi.org/10.12989/scs.2019.33.4.583.
- Bao, Y. and Li, H. (2020), "Machine learning paradigm for Structural health monitoring", Struct. Health Monit., https://doi.org/10.1177/1475921720972416.
- Bao, Y., Li, H., Zhang, F. and Ou, J. (2013), "Compressive sampling based approach for identification of moving loads distribution on cable-stayed bridges", Process Sens. Smart Struct. Technol. Civil, Mech. Aerosp. Syst., 8692, 86923B-1-10. https://doi.org/10.1117/12.2009542.
- Bergstra, J., Bardenet, R., Bengio, Y. and Kegl, B. (2011), "Algorithms for hyper-parameter optimization", Proceedings of the 25th Annual Conference on Neural Information Processing Systems (NIPS), 1-9.
- Bui, V.T., Truong, V.H., Trinh, M.C. and Kim, S.E. (2020), "Fully nonlinear analysis of steel-concrete Composite girder with web local buckling effects", Int. J. Mech. Sci., 184, 05729. https://doi.org/10.1016/j.ijmecSci.2020.105729.
- Bui, V.T., Vu, Q.V., Truong, V.H. and Kim, S.E. (2021), "Fully nonlinear inelastic analysis of rectangular CFST frames with semi - rigid connections", Steel Compos. Struct., 38(5), 497-521. https://doi.org/10.12989/scs.2021.38.5.497.
- Chen, B.H. and Huang, S.C. (2015), "Probabilistic neural networks based moving vehicles extraction algorithm for intelligent traffic surveillance systems", Inf. Sci., 299, 283-295. https://doi.org/10.1016/j.ins.2014.12.033.
- Chen, S.Z., Wu, G. and Feng, D.C. (2019), "Development of a bridge weigh-in-motion method considering the presence of multiple vehicles", Eng. Struct., 191, 724-739. https://doi.org/10.1016/j.engStruct.2019.04.095.
- Chen, Z., Li, H., Bao, Y., Li, N. and Jin, Y. (2016), "Identification of spatio-temporal distribution of vehicle loads on long-span bridges using computer vision technology", Struct. Control Heal. Monit., 23(3), 517-534. https://doi.org/10.1002/stc.1780.
- Cho, S., Park, J., Jung, H. J., Yun, C. B., Jang, S., Jo, H. and Seo, J. W., (2010), "Structural health monitoring of a cable-stayed bridge using acceleration data via wireless smart sensor network", Bridg. Maintenance, Safety, Manage., Life-Cycle Optim. - Proc. 5th Int. Conf. Bridg. Maintenance, Saf. Manag., 6(5), 158-164. https://doi.org/10.1201/b10430-19.
- Cho, K., Van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H. and Bengio, Y. (2014), "Learning phrase representations using RNN encoder-decoder for statistical machine translation", EMNLP 2014 - Conference on Empirical Methods in Natural Language Processing, 1724-1734. https://doi.org/10.3115/v1/d14-1179.
- Dan, D., Ge, L. and Yan, X. (2019), "Identification of moving loads based on the information fusion of weigh-in-motion system and multiple camera machine vision", Meas. J. Int. Meas. Confed., 144, 155-166. https://doi.org/10.1016/j.measurement.2019.05.042.
- Deng, Y., Li, A. and Feng, D. (2019), "Fatigue performance investigation for hangers of suspension bridges based on site-specific vehicle loads", Struct. Heal. Monit., 18(3), 934-948. https://doi.org/10.1177/1475921718786710.
- Moses, F. (1979), "Weigh-in-motion system using instrumented bridges", Transp. Eng. J., 105(3), 233-249. https://doi.org/10.1061/TPEJAN.0000783
- Fryba, L. (1999), Vibration of Solids and Structures under moving Loads, Thomas Telford Ltd.
- Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O. and Dahl, G.E. (2017), "Neural message passing for quantum chemistry", Proc. 34th Int. Conf. Mach. Learn. Icml 2017, 3, 2053-2070.
- Ha, M.H., Vu, Q.A. and Truong, V.H. (2018), "Optimum design of stay cables of steel cable-stayed bridges using nonlinear inelastic analysis and genetic algorithm", Struct., 16, 288-302. https://doi.org/10.1016/j.istruc.2018.10.007.
- Hamilton, W.L., Zhang, J., Danescu-Niculescu-Mizil, C., Jurafsky, D. and Leskovec, J. (2017), "Loyalty in online communities", Proceedings of the 11th International Conference on Web and Social Media, ICWSM, 87.
- Hassona, F., Hashem, M., Abdelmalak, R. and Hakeem, B. (2018), "Facing the challenges in structural engineering", Sustain. Civil Infrastruct., 265-280. https://doi.org/10.1007/978-3-319-61914-9.
- Huang, Y., Li, J. and Fu, J. (2019), "Review on application of artificial intelligence in civil engineering", C. Comput. Model. Eng. Sci., 121(3), 845-875. https://doi.org/10.32604/cmes.2019.07653.
- Kalin, J., Znidaric, A. and Lavric, I. (2006), "Practical implementation of nothing-on-the-road bridge weigh-in-motion system", Proc., 9th Int. Symp. Heavy Veh. Weight. Dimens., 207, 3-10.
- Ketkar, N. (2017), "Introduction to PyTorch", Deep Learning with Python, 195-208. https://doi.org/10.1007/978-1-4842-2766-4.
- Kim, S.E., Vu, Q.V., Papazafeiropoulos, G., Kong, Z. and Truong, V.H. (2020), "Comparison of machine learning algorithms for regression and classification of ultimate load-carrying capacity of steel frames", Steel Compos. Struct., 37(2), 193-209. https://doi.org/10.12989/scs.2020.37.2.193.
- Kingma, D.P. and Ba, J.L. (2015), "Adam: A method for stochastic optimization", 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, 1-15.
- Lansdell, A., Song, W. and Dixon, B. (2017), "Development and testing of a bridge weigh-in-motion method considering nonconstant vehicle speed", Eng. Struct., 152, 709-726. https://doi.org/10.1016/j.engStruct.2017.09.044.
- Law, S.S., Bu, J.Q., Zhu, X.Q. and Chan, S.L., (2004), "Vehicle axle loads identification using finite element method, Eng. Struct., 26(8), 1143-1153. https://doi.org/10.1016/j.engStruct.2004.03.017.
- Law, S.S. and Fang, Y.L., (2001), "Moving force identification: Optimal state estimation approach", J. Sound Vib., 239(2), 233-254. https://doi.org/10.1006/jsvi.2000.3118.
- Li, S., Li, H., Liu, Y., Lan, C., Zhou, W. and Ou, J., (2013), "SMC Structural health monitoring benchmark problem using monitored data from an actual cable-stayed bridge", Struct. Control Heal. Monit., 21(2), 156-172. https://doi.org/10.1002/stc.1559.
- Li, L., Jamieson, K., Rostamizadeh, A., Gonina, E., Moritz, J.B., Recht, B. and Talwalkar, A. (2020), "A system for massively parallel hyperparameter tuning", Proceedings of the Machine Learning and Systems 2020. Texas, USA.
- Liu, Z. and Zhou, J. (2020), Introduction Graph Neural Networks, Morgan & Claypool. https://doi.org/10.2200/S00980ED1V01Y202001AIM045.
- Luat, N.V., Shin, J., Han, S.W., Nguyen, N.V. and Lee, K. (2021), "Ultimate axial capacity prediction of CCFST columns using hybrid intelligence models - A new approach" , Steel Compos. Struct., 40(3), 461-479. https://doi.org/10.12989/scs.2021.40.3.461.
- Lydon, M., Taylor, S.E., Robinson, D., Mufti, A. and Brien, E.J.O. (2016), "Recent developments in bridge weigh in motion (BWIM)", J. Civ. Struct. Heal. Monit., 6(1), 69-81. https://doi.org/10.1007/s13349-015-0119-6.
- Malekjafarian, A., McGetrick, P.J. and Obrien, E.J. (2015), "A review of indirect bridge monitoring using passing vehicles", Shock Vib., 2015, 1-16. https://doi.org/10.1155/2015/286139.
- Marwala, T. (2010), Finite-Element-Model Updating Using Computional Intelligence Techniques: Applications to Struct. Dynam., https://doi.org/10.1007/978-1-84996-323-7.
- OBrien, E.J., Enright, B. and Dempsey, T. (2010), "The influence of correlation on the extreme traffic loading of bridges", Proceedings of the 5th International Conference on Bridge Maintenance, Safety and Management, 958-964. https://doi.org/10.1201/b10430-136.
- Rahimi, A., Cohn, T. and Baldwin, T. (2018), "Semi-supervised user geolocation via graph convolutional networks", ACL 2018 - 56th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers), 2009-2019. https://doi.org/10.18653/v1/p18-1187.
- Serban, A. (2017), "Failure estimation of the Composite laminates using machine learning techniques", Steel Compos. Struct., 25(6), 663-670. https://doi.org/10.12989/scs.2017.25.6.663.
- Shariati, M., Mafipour, M.S., Mehrabi, P., Zandi, Y., Dehghani, D., Bahadori, A., Shariati, A., Trung, N.T., Salih, M.N.A. and PoiNgian, S. (2019), "Application of extreme learning machine (ELM) and Genetic Programming (GP) to design steel-concrete composite floor systems at elevated temperatures", Steel Compos. Struct., 33(3), 319-332. https://doi.org/10.12989/scs.2019.33.3.319.
- Song, M.T., Cao, D.Q., Zhu, W.D. and Bi, Q.S., (2016), "Dynamic response of a cable-stayed bridge subjected to a moving vehicle load", Acta Mech., 227(10), 2925-2945. https://doi.org/10.1007/s00707-016-1635-0.
- Thai, H.T. and Choi, D.H. (2011), "A fiber beam-column element for frame analysis", Proceedings of the 7th International Conference on Steel and Aluminium Structures ICSAS, 128-134.
- Thai, H.T. and Choi, D.H. (2011), "A fiber beam-column element for frame analysis", Mater. Sci., https://doi.org/10.3850/978-981-08-9247-0_rp017-icsas11.
- Thai, H.T. and Kim, S.E. (2007), "Practical nonlinear dynamic analysis of cable-stayed bridge", Construction, 13-16.
- Thai, H.T. and Kim, S.E. (2008), "Second-order inelastic dynamic analysis of three-dimensional cable-stayed bridges", Steel Struct., 8, 205-214.
- Thai, H.T. and Kim, S.E. (2009), "Practical advanced analysis software for nonlinear inelastic analysis of space steel structures", Adv. Eng. Softw., 40(9), 786-797. https://doi.org/10.1016/j.advengsoft.2009.02.001.
- Thai, H.T. and Kim, S.E. (2011a), "Nonlinear static and dynamic analysis of cable structures", Finite Elem. Anal. Des., 47(3), 237-246. https://doi.org/10.1016/j.finel.2010.10.005.
- Thai, H.T. and Kim, S.E. (2011b), "Practical advanced analysis software for nonlinear inelastic dynamic analysis of steel structures", J. Constr. Steel Res., 67(3), 453-461. https://doi.org/10.1016/j.jcsr.2010.09.009.
- Thai, H.T. and Kim, S.E. (2012), "Second-order inelastic analysis of cable-stayed bridges", Finite Elem. Anal. Des., 53, 48-55. https://doi.org/10.1016/j.finel.2011.07.002.
- Tran, V.L., Jang, Y. and Kim, S.E. (2021), "Improving the axial compression capacity prediction of elliptical CFST columns using a hybrid ANN-IP model", Steel Compos. Struct., 39(3), 319-335. https://doi.org/10.12989/scs.2021.39.3.319.
- Transportation, M. of C. and (2015), Standard Design Specification of Highway Bridges Seoul, Korea.
- Truong, V.H. and Kim, S.E. (2017), "An efficient method for reliability-based design optimization of nonlinear inelastic steel space frames", Struct. Multidimscip. Optim., 56(2), 331-351. https://doi.org/10.1007/s00158-017-1667-7.
- Berg, V.D.R., Kipf, T.N. and Welling, M. (2017), "Graph convolutional matrix completion", arXiv:1706.02263.
- Vinyals, O., Bengio, S. and Kudlur, M. (2016), "Order matters: sequence to sequence for sets", 4th International Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings, 1-11.
- Wang, L., Chen, F. and Yin, H. (2016), "Detecting and tracking vehicles in traffic by unmanned aerial vehicles", Autom. Constr., 72, 294-308. https://doi.org/10.1016/j.autcon.2016.05.008.
- Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., Song, X., Zhou, J., Ma, C., Yu, L., Gai, Y., Xiao, T., He, T., Karypis, G., Li, J. and Zhang, Z. (2019), "Deep graph library: a graph-centric, highly-performant package for graph neural networks", Comput. Sci., Math., 1-18. http://arxiv.org/abs/1909.01315.
- Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C. and Yu, P.S. (2020), "A Comprehensive survey on graph neural networks", IEEE Transactions on Neural Networks and Learning Systems, 1-21. https://doi.org/10.1109/tnnls.2020.2978386.
- Yan, W., Deng, L., Zhang, F., Li, T. and Li, S. (2019), "Probabilistic machine learning approach to bridge fatigue failure analysis due to vehicular overloading", Eng. Struct., 193, 91-99. https://doi.org/10.1016/j.engStruct.2019.05.028.
- Yang, H., Qian, H. and Wang, P. (2021), "Fatigue property analysis of U rib-to-crossbeam connections under heavy traffic vehicle load considering in-plane shear stress", Steel Compos. Struct., 38(3), 271-280. https://doi.org/10.12989/scs.2021.38.3.271.
- Yang, Y.B. and Shieh, M.S. (1990), "Solution method for nonlinear problems with multiple critical points", AIAA J., 28(12), 2110-2116. https://doi.org/10.2514/3.10529
- Ye, X.W., Yi, T.H., Dong, C.Z. and Liu, T. (2016), "Vision-based structural displacement measurement: system performance evaluation and influence factor analysis", Meas. J. Int. Meas. Confed., 88, 372-384. https://doi.org/10.1016/j.measurement.2016.01.024.
- Ying, R., Morris, C. and Hamilton, W.L. (2018), "Hierarchical graph representation learning with differentiable pooling", Adv. Neural Inform. Process. Syst., 4800-4810.
- Yu, L. and Chan, T.H.T. (2007), "Recent research on identification of moving loads on bridges", J. Sound Vib., 305(1-2), 3-21. https://doi.org/10.1016/j.jsv.2007.03.057.
- Yu, Y., Cai, C.S. and Deng, L. (2017), "Nothing-on-road bridge weigh-in-motion considering the transverse position of the vehicle" , Struct. Infrastruct. Eng., 14(8), 1108-1122. https://doi.org/10.1080/15732479.2017.1401095
- Zhang, F. and Li, H. (2012), "Moving forces and their bounds identification method for cable-stayed bridges with uncertain parameters and noisy measurements", Heal. Monit. Struct. Biol. Syst., 8348, 1-11. https://doi.org/10.1117/12.917410.
- Zhang, L., Qiu, G. and Chen, Z. (2021), "Structural health monitoring methods of cables in cable-stayed bridge: A review", Meas. J. Int. Meas. Confed., 168(May 2020), 108343-1-7. https://doi.org/10.1016/j.measurement.2020.108343.
- Zhou, Y., Pei, Y., Li, Z., Fang, L., Zhao, Y. and Yi, W. (2020), "Vehicle weight identification system for spatiotemporal load distribution on bridges based on non-contact machine vision technology and deep learning algorithms", 159, 107801. https://doi.org/10.1016/j.measurement.2020.107801.
- Zhu, X.Q. and Law, S.S. (2002), "Dynamic load on continuous multi-lane bridge deck from moving vehicles", J. Sound Vib., 251(4), 697-716. https://doi.org/10.1006/jsvi.2001.3996.