참고문헌
- Adamian, A., Hosseini Safari, K., Sheikholeslami, M., Habibi, M. Al-Furjan, M.S.H. and Chen, G. (2020), "Critical temperature and frequency characteristics of GPLs-reinforced composite doubly curved panel", Appl. Sci., 10(9), 3251. https://doi.org/10.3390/app10093251.
- Al-Furjan, M.S.H., Habibi, M., Jung, D.W., Chen, G., Safarpour, M. and Safarpour, H. (2021b), "Chaotic responses and nonlinear dynamics of the graphene nanoplatelets reinforced doublycurved panel", Eur. J. Mech.-A/Solids, 85, 104091. https://doi.org/10.1016/j.euromechsol.2020.104091.
- Al-Furjan, M.S.H., Oyarhossein, M.A., Habibi, M., Safarpour, H. and Jung, D.W. (2020), "Frequency and critical angular velocity characteristics of rotary laminated cantilever microdisk via twodimensional analysis", Thin. Walled. Struct., 157, 107111. https://doi.org/10.1016/j.tws.2020.107111.
- Al-Furjan, M.S.H., Oyarhossein, M.A., Habibi, M., Safarpour, H., Jung, D.W. and Tounsi, A. (2021a), "On the wave propagation of the multi-scale hybrid nanocomposite doubly curved viscoelastic panel", Compos. Struct., 255, 112947. https://doi.org/10.1016/j.compstruct.2020.112947.
- Al-Furjan, M.S.H., Samimi-Sohrforozani, E., Habibi, M., Jung, D.W. and Safarpour, H. (2021c), "Vibrational characteristics of a higher-order laminated composite viscoelastic annular microplate via modified couple stress theory", Compos. Struct., 257, 113152. https://doi.org/10.1016/j.compstruct.2020.113152.
- Alibeigloo, A. (2020), "Three-dimensional thermoelasticity analysis of graphene platelets reinforced cylindrical panel", Eur. J. Mech.A/Solids., 81, 103941. https://doi.org/10.1016/j.euromechsol.2019.103941.
- An, D., Xu, D., Ni, Z., Wang, Y.S.B. and Li, R. (2020), "Finite integral transform method for analytical solutions of static problems of cylindrical shell panels", Eur. J. Mech.-A/Solids, 83, 104033. https://doi.org/10.1016/j.euromechsol.2020.104033.
- Arefi, M. (2013), "Nonlinear thermoelastic analysis of thickwalled functionally graded piezoelectric cylinder", Acta. Mech., 224(11), 2771-2783. https://doi.org/10.1007/s00707-013-0888-0.
- Arefi, M. (2014), "A complete set of equations for piezomagnetoelastic analysis of a functionally graded thick shell of revolution", Lat. Amer. J. Solids. Struct., 11(11), 2073-2098. https://doi.org/10.1590/S1679-78252014001100009.
- Arefi, M. and Civalek, O. (2020), "Static analysis of functionally graded composite shells on elastic foundations with nonlocal elasticity theory", Arch. Civil. Mech. Eng., 20(1), 1-17. https://doi.org/10.1007/s43452-020-00032-2.
- Arefi, M. and Nahas, I. (2014), "Nonlinear electro thermo elastic analysis of a thick spherical functionally graded piezoelectric shell", Compos. Struct., 118, 510-518. https://doi.org/10.1016/j.compstruct.2014.08.002.
- Arefi, M. and Rahimi, G.H. (2010), "Thermo elastic analysis of a functionally graded cylinder under internal pressure using first order shear deformation theory", Sci. Res. Essays., 5(12), 1442-1454. https://doi.org/10.5897/SRE.9000953.
- Arefi, M. and Rahimi, G.H. (2011), "Non linear analysis of a functionally graded square plate with two smart layers as sensor and actuator under normal pressure", Smart. Struct. Syst., 8(5), 433-447. https://doi.org/10.12989/sss.2011.8.5.433.
- Arefi, M. and Rahimi, G.H. (2012a), "Comprehensive thermoelastic analysis of a functionally graded cylinder with different boundary conditions under internal pressure using first order shear deformation theory", Mechanika, 18(1), 5-13. https://doi.org/10.5755/j01.mech.18.1.1273.
- Arefi, M. and Rahimi, G.H. (2012c), "Three-dimensional multifield equations of a functionally graded piezoelectric thick shell with variable thickness, curvature and arbitrary nonhomogeneity", Acta. Mech., 223(1), 63-79. https://doi.org/10.1007/s00707-011-0536-5.
- Arefi, M. and Rahimi, G.H. (2014), "Application of shear deformation theory for two dimensional electro-elastic analysis of a FGP cylinder", Smart. Struct. Syst., 13(1), 1-24. https://doi.org/10.12989/sss.2014.13.1.001.
- Arefi, M. and Soltan Arani, A.H. (2020), "Nonlocal vibration analysis of the three-layered FG nanoplates subjected to applied electric potential considering thickness stretching effect", Proc. Inst. Mech. Eng., Part L: J. Mater.: Design Appl., 234(9), 1183-1202. https://doi.org/10.1177/1464420720928378.
- Arefi, M. and Zenkour A.M. (2017a), "Transient analysis of a three-layer microbeam subjected to electric potential", Int. J. Smart. Nano. Mater., 8(1), 20-40. https://doi.org/10.1080/19475411.2017.1292967.
- Arefi, M. and Zenkour, A.M. (2016), "A simplified shear and normal deformations nonlocal theory for bending of functionally graded piezomagnetic sandwich nanobeams in magneto-thermo-electric environment", J. Sandw. Struct. & Mater., 18(5), 624-651. https://doi.org/10.1177/1099636216652.
- Arefi, M. and Zenkour, A.M. (2018), "Size-dependent electroelastic analysis of a sandwich microbeam based on higher-order sinusoidal shear deformation theory and strain gradient theory", J. Intel. Mater. Syst. Struct., 29(7), 1394-1406. https://doi.org/10.1177/1045389X17733333.
- Arefi, M. and Zenkour, A.M. (2019), "Effect of thermo-magnetoelectro-mechanical fields on the bending behaviors of a threelayered nanoplate based on sinusoidal shear-deformation plate theory", J. Sandw. Struct. Mater., 21(2), 639-669. https://doi.org/10.1177/1099636217697497.
- Arefi, M., Bidgoli, E.M.-R., Dimitri, R., Tornabene, F., Reddy, J.N. (2019), "Size-dependent free vibrations of FG polymer composite curved nanobeams reinforced with graphene nanoplatelets resting on Pasternak foundations", Applied Sciences (Switzerland), 9(8), 1580. https://doi.org/10.3390/app9081580.
- Arefi, M., Kiani, M. and Zenkour, A.M. (2020), "Size-dependent free vibration analysis of a three-layered exponentially graded nano-/micro-plate with piezomagnetic face sheets resting on Pasternak's foundation via MCST". J. Sandw. Struct. & Mater., 22(1), 55-86. https://doi.org/10.1177/1099636217734279.
- Arefi, M., Mohammadi, M., Tabatabaeian, A., Dimitri, R. and Tornabene, F. (2018), "Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels", Steel. Compos. Struct., 27(4), 525-536. https://doi.org/10.12989/scs.2018.27.4.525.
- Arefi, M., Rahimi, G.H. (2012b), "Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure", Smart. Struct. Syst., 9(2), 127-143. https://doi.org/10.12989/sss.2012.9.2.127.
- Arefi, M., Rahimi, G.H., Khoshgoftar, M.J. (2011), "Optimized design of a cylinder under mechanical, magnetic and thermal loads as a sensor or actuator using a functionally graded piezomagnetic material", Int. J. Phys. Sci, 6 (27), 6315-6322. https://doi.org/10.5897/IJPS10.597.
- Arefi, M., Zenkour, A.M. (2017b), "Employing the coupled stress components and surface elasticity for nonlocal solution of wave propagation of a functionally graded piezoelectric Love nanorod model", J. Intel. Mater. Syst. Struct., 28(17), 2403-2413. https://doi.org/10.1177/1045389X17689930.
- Bai, Y., Nardi, D.C., Zhou, X., Picon, R.A. and Florez-Lopez, J. (2021), "A new comprehensive model of damage for flexural subassemblies prone to fatigue", Comput. Struct., 256, 106639. https://doi.org/10.1016/j.compstruc.2021.106639.
- Bhagat, S., Pitchaimani, J. and Murigendrappa, S.M. (2016), "Buckling and dynamic characteristics of a laminated cylindrical panel under non-uniform thermal load", Steel. Compos. Struct., 22(6), 1359-1389. https://doi.org/10.12989/scs.2016.22.6.1359.
- Biswal, M., Sahu, S.Kr., Asha, A.V. and Nanda, N. (2016), "Hygrothermal effects on buckling of composite shellexperimental and FEM results", Steel. Compos. Struct., 22(6), 1445-1463. https://doi.org/10.12989/scs.2016.22.6.1445.
- Brendel, B., Ramm, E. (1980), "Linear and nonlinear stability analysis of cylindrical shells", Comput. Struct., 12(4), 549-558. https://doi.org/10.1016/0045-7949(80)90130-3.
- Chen, H., Miao, Y., Chen, Y., Fang, L., Zeng, L. and Shi, J. (2021), "Intelligent Model-based Integrity Assessment of Nonstationary Mechanical System", J. Web. Eng., 20(2). https://doi.org/10.13052/jwe1540-9589.2022.
- Cheung, Y.K. and Cheung, M.S. (1972), "Vibration analysis of cylindrical panels", J. Sound. Vib., 22(1), 59-73. https://doi.org/10.1016/0022-460X(72)90844-9.
- Cui, X., Li, C., Zhang, Y., Said, Z., Debnath, S., Sharma, S., Ali, H.M., Yang, M., Gao, T. and Li, R. (2022), "Grindability of titanium alloy using cryogenic nanolubricant minimum quantity lubrication", J. Manuf. Proc., 80, 273-286. https://doi.org/10.1016/j.jmapro.2022.06.003.
- Fan, X., Wei, G., Lin, X., Wang, X., Si, Z., Zhang, X. and Zhao, W. (2020), "Reversible switching of interlayer exchange coupling through atomically thin VO2 via electronic state modulation", Matter, 2(6), 1582-1593. https://doi.org/10.1016/j.matt.2020.04.001.
- Gao, T., Li, C., Yang, M., Zhang, Y., Jia, D., Ding, W., Debnath, S. Yu, T., Said, Z. and Wang. J. (2021), "Mechanics analysis and predictive force models for the single-diamond grain grinding of carbon fiber reinforced polymers using CNT nano-lubricant", J. Mater. Proc. Tech., 290, 116976. https://doi.org/10.1016/j.jmatprotec.2020.116976.
- Guo, C., Ye, C., Ding, Y. and Wang, P. (2021), "A Multi-State Model for Transmission System Resilience Enhancement Against Short-Circuit Faults Caused by Extreme Weather Events", IEEE. Transact. Power. Delivery., 36(4), 2374-2385. https://doi.org/10.1109/TPWRD.2020.3043938.
- Guo, Y., Mi, H. and Habibi, M. (2021), "Electromechanical energy absorption, resonance frequency, and low-velocity impact analysis of the piezoelectric doubly curved system", Mech. Syst Signal. Proc., 157, 107723. https://doi.org/10.1016/j.ymssp.2021.107723.
- Heidari, Y., Arefi, M. and Irani-Rahaghi, M. (2021), "Free vibration analysis of cylindrical micro/nano-shell reinforced with CNTRC patches", Int. J. Appl. Mech. 13(04), 2150040. https://doi.org/10.1142/S175882512150040X.
- Hou, F., Wu, S., Moradi, Z. and Shafiei, N. (2021), "The computational modeling for the static analysis of axially functionally graded micro-cylindrical imperfect beam applying the computer simulation", Eng. Comput. https://doi.org/10.1007/s00366-021-01456-x.
- Huang, X., Zhang, Y., Moradi, Z. and Shafiei, N. (2021b), "Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform microtube", Eng. Comput. https://doi.org/10.1007/s00366-021-01395-7.
- Huang, X., Zhu, Y., Vafaei, P., Moradi, Z. and Davoudi, M. (2021a), "An iterative simulation algorithm for large oscillation of the applicable 2D-electrical system on a complex nonlinear substrate", Eng. Comput., https://doi.org/10.1007/s00366-021-01320-y.
- Huang, Y., Karami, B., Shahsavari, D. and Tounsi, A. (2021), "Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels", Arch. Civ. Mech. Eng. 21, 139, https://doi.org/10.1007/s43452-021-00291-7.
- Isavand, S., Bodaghi, M., Shakeri M. and Aghazadeh Mohandesi, J. (2015), "Dynamic response of functionally gradient austenitic-ferritic steel composite panels under thermomechanical loadings", Steel. Compos. Struct., 18(1), 1-28. https://doi.org/10.12989/scs.2015.18.1.001.
- Jiao, J., Ghoreishi, S-M Moradi, Z. and Oslub, K. (2021), "Coupled particle swarm optimization method with genetic algorithm for the static-dynamic performance of the magnetoelectro-elastic nanosystem", Eng. Comput. https://doi.org/10.1007/s00366-021-01391-x.
- Keshav, V., Patel, S.N. and Kumar, R. (2019), "Stability and Failure Study of Suddenly Loaded Laminated Composite Cylindrical Panel", Int. J. Appl. Mech., 11(10), 1950093. https://doi.org/10.1142/S1758825119500935.
- Kholdi, M., Rahimi, G., Loghman, A., Ashrafi, H. and Arefi, M (2022), "Analysis of Thick-Walled Spherical Shells Subjected to Various Temperature Gradients: Thermo-Elasto-Plastic and Residual Stress Studies", Int. J. Appl. Mech., 13(9), 2150105. https://doi.org/10.1142/S1758825121501052.
- Kim, Y. and Park, J. (2020), "An approximate approach on the buckling analysis of a composite lattice cylindrical panel", Adv. Compos. Mater., 29(6), 603-630. https://doi.org/10.1080/09243046.2020.1755100
- Kouider, D., Kaci, A., Selim, M.M., Bousahla, A.A., Bourada, F. Tounsi, A., Tounsi, A. and Hussain, M. (2021), "An original four-variable quasi-3D shear deformation theory for the static and free vibration analysis of new type of sandwich plates with both FG face sheets and FGM hard core", Steel. Compos. Struct. 41(2), 167-191. https://doi.org/10.12989/scs.2021.41.2.167.
- Kumar, R., Dey, T. and Panda, S.K. (2019), "Instability and vibration analyses of FG cylindrical panels under parabolic axial compressions", Steel. Compos. Struct., 31(2), 187-199. https://doi.org/10.12989/scs.2019.31.2.187.
- Li, R., Zheng, X., Yang, Y., Huang, M. and Huang, X. (2019), "Hamiltonian system-based new analytic free vibration solutions of cylindrical shell panels", Appl. Math. Modelling., 76, 900-917. https://doi.org/10.1016/j.apm.2019.07.020.
- Liu, Y., Wang, W., He, T., Moradi, Z. and Larco Benitez, M.A. (2021), "On the modelling of the vibration behaviors via discrete singular convolution method for a high-order sector annular system", Eng. Comput. https://doi.org/10.1007/s00366-021-01454-z.
- Lu, C., Zhou, H., Li, L., Yang, A., Xu, C., Ou, Z. and Tian, F. (2022a), "Split-core magnetoelectric current sensor and wireless current measurement application", Measurement: J. Int. Measur. Confed., 188, 110527. https://doi.org/10.1016/j.measurement.2021.110527.
- Lu, Z., Gu, D., Ding, H., Lacarbonara, W. and Chen, L. (2020), "Nonlinear vibration isolation via a circular ring", Mech. Syst. Signal. Proces., 136, 106490. https://doi.org/10.1016/j.ymssp.2019.106490.
- Lu, Z., Liu, W., Ding, H. and Chen, L. (2022b), "Energy Transfer of an Axially Loaded Beam with a Parallel-Coupled Nonlinear Vibration Isolator", J. Vib. Acoust., 144(5). https://doi.org/10.1115/1.4054324.
- Ma, L., Liu, X. and Moradi, Z. (2022), "On the chaotic behavior of graphene-reinforced annular systems under harmonic excitation", Eng. Comput. 38, 2583-2607. https://doi.org/10.1007/s00366-020-01210-9.
- Mirjavadi, S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020), "Post-buckling analysis of geometrically imperfect tapered curved micro-panels made of graphene oxide powder reinforced composite", Steel. Compos. Struct., 36(1), 63-74. https://doi.org/10.12989/scs.2020.36.1.063.
- Mohammad-Rezaei Bidgoli, E. and Arefi, M. (2021), "Free vibration analysis of micro plate reinforced with functionally graded graphene nanoplatelets based on modified straingradient formulation", J. Sandw. Struct. Mater., 23(2), 436-472. https://doi.org/10.1177/1099636219839302.
- Muhammad, I., Ali, A., Zhou, L., Zhang, W. and Wong, P.K.J. (2022), "Vacancy-engineered half-metallicity and magnetic anisotropy in CrSI semiconductor monolayer", J. Alloys. Compounds., 909, 164797. https://doi.org/10.1016/j.jallcom.2022.164797.
- Pan, X., Wu, W., Yu, X., Lu, L., Guo, C. and Zhao, Y. (2023), "Typical electrical, mechanical, electromechanical characteristics of copper-encapsulated REBCO tapes after processing in temperature under 250 ℃", Superconductor. Sci. Techn. https://doi.org/1088/1361-6668/acb740. 1088/1361-6668/acb740
- Peng, Y., Shi, C., Zhu, Y., Gu, M. and Zhuang, S. (2020), "Terahertz spectroscopy in biomedical field: a review on signalto-noise ratio improvement", PhotoniX 1, 12. https://doi.org/10.1186/s43074-020-00011-z.
- Pourmoayed, A.R., Malekzadeh Fard, K. and Shahravi, M. (2017), "Vibration Analysis of a Cylindrical Sandwich Panel with Flexible Core Using an Improved Higher-Order Theory", Lat. Am. J. Solids Struct. 14(4), https://doi.org/10.1590/1679-78253410.
- Rahimi, G.H., Arefi, M. and Khoshgoftar, M.J. (2011), "Application and analysis of functionally graded piezoelectrical rotating cylinder as mechanical sensor subjected to pressure and thermal loads", Appl. Math. Mech., 32(8), 997-1008. https://doi.org/10.1007/s10483-011-1475-6.
- Rahimi, G.H., Arefi, M. and Khoshgoftar, M.J. (2012), "Electro elastic analysis of a pressurized thick-walled functionally graded piezoelectric cylinder using the first order shear deformation theory and energy method", Mechanika, 18(3), 292-300. https://doi.org/10.5755/j01.mech.18.3.1875.
- Redekop, D. and Makhoul, E. (2000), "Use of the differential quadrature method for the buckling analysis of cylindrical shell panels", Struct. Eng. Mech., 10(5), 451-462. https://doi.org/10.12989/sem.2000.10.5.45.
- Shaban, M. and Mazaheri, H. (2021), "Bending analysis of fivelayer curved functionally graded sandwich panel in magnetic field: closed-form solution", Appl. Math. Mech. -Engl. Ed., 42, 251-274. https://doi.org/10.1007/s10483-021-2675-7.
- Sharma, J.N., Pal, M. and Chand, D. (2004), "Three-dimensional vibration analysis of a piezothermoelastic cylindrical panel", Int. J. Eng. Sci., 42(15-16), 1655-1673. https://doi.org/10.1016/j.ijengsci.2004.01.006.
- Shi, J., Zhao, B., He, T., Tu, L., Lu, X. and Xu, H. (2023), "Tribology and dynamic characteristics of textured journalthrust coupled bearing considering thermal and pressure coupled effects", Trib. Int., 180, 108292. https://doi.org/10.1016/j.triboint.2023.108292
- Tian, L., Li, M., Li, L., Li, D. and Bai, C. (2023), "Novel joint for improving the collapse resistance of steel frame structures in column-loss scenarios", Thin. Walled. Struct., 182, 110219. https://doi.org/10.1016/j.tws.2022.110219.
- Tounsi, A., Al-Dulaijan, S.U., Al-Osta, M.A., Chikh, A., AlZahrani, M.M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermomechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel. Compos. Struct. 34(4), 511-524. https://doi.org/10.12989/scs.2020.34.4.511.
- Twinkle, C.M., Nithun, C., Pitchaimani, J. and Rajamohan, V. (2021), "Modal analysis of cylindrical panels at elevated temperatures under nonuniform heating conditions: Experimental investigation", Proc. The. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., https://doi.org/10.1177/0954406220936738.
- Wang, X. and Lyu, X. (2021), "Experimental study on vertical water entry of twin spheres side-by-side", Ocean. Eng., 221, 108508. https://doi.org/10.1016/j.oceaneng.2020.108508.
- Wang, X., Li, C., Zhang, Y., Said, Z., Debnath, S., Sharma, S., Yang, M. and Gao, T. (2022), "Influence of texture shape and arrangement on nanofluid minimum quantity lubrication turning", The. Int. J. Adv. Manuf. Tech., 119(1-2), 631-646. https://doi.org/10.1007/s00170-021-08235-4).
- Xiao, X., Zhang, H., Li, Z., Chen, F. and Rasulo, A. (2022), "Effect of Temperature on the Fatigue Life Assessment of Suspension Bridge Steel Deck Welds under Dynamic Vehicle Loading", Math. Prob. Eng., 7034588. https://doi.org/10.1155/2022/7034588.
- Xie, L., Zhu, Y., Yin, M., Wang, Z., Ou, D., Zheng, H. and Yin, G. (2022). "Self-feature-based point cloud registration method with a novel convolutional Siamese point net for optical measurement of blade profile", Mech. Syst. Signal. Proces., 178, 109243. https://doi.org/10.1016/j.ymssp.2022.109243.
- Xu, W., Li, C., Zhang, Y., Ali, H.M., Sharma, S., Li, R., Yang, M. Gao, T., Liu, M., Wang, X., Said, Z., Liu, X. and Zou. Z. (2022), "Electrostatic atomization minimum quantity lubrication machining: from mechanism to application", Int. J. Extrem. Manuf., 4. 042003. https://doi.org/10.1088/2631-7990/ac9652.
- Xu, W., Pan, G., Moradi, Z. and Shafiei, N. (2021), "Nonlinear forced vibration analysis of functionally graded non-uniform cylindrical microbeams applying the semi-analytical solution, Compos. Struct., 275, 114395. https://doi.org/10.1016/j.compstruct.2021.114395.
- Yang, M., Li, C., Zhang, Y., Jia, D., Li, R., Hou, Y., Cao, H. and Wang, J. (2019). "Predictive model for minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics under different lubricating conditions", Ceram. Int., 45(12), 14908-14920. https://doi.org/10.1016/j.ceramint.2019.04.226.
- Yang, M., Li, C., Zhang, Y., Jia, D., Zhang, X., Hou, Y., Li, R. and Wang, J., (2017), "Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions", Int. J. Mach. Tools. Manu., 122, 55-65. https://doi.org/10.1016/j.ijmachtools.2017.06.003.
- Yang, Y.Y., Gong, Y.D., Li, C.H., Wen, X.L. and Sun, J.Y. (2021), "Mechanical performance of 316L stainless steel by hybrid directed energy deposition and thermal milling process", J. Mater. Proc. Tech., 291, 117023. https://doi.org/10.1016/j.jmatprotec.2020.117023.
- Yin, M., Zhu, Y., Yin, G., Fu, G. and Xie, L. (2022), "Deep Feature Interaction Network for Point Cloud Registration, With Applications to Optical Measurement of Blade Profiles", IEEE. Trans. Indust. Inf. https://doi.org/10.1109/TII.2022.3220889.
- Yu, X., Maalla, A. and Moradi, Z. (2022), "Electroelastic highorder computational continuum strategy for critical voltage and frequency of piezoelectric NEMS via modified multi-physical couple stress theory", Mech. Syst Signal. Proc., 165, 108373, https://doi.org/10.1016/j.ymssp.2021.108373.
- Yuan, Q., Kato, B., Fan, K. and Wang, Y. (2023), "Phased array guided wave propagation in curved plates", Mech. Syst. Signal. Proces., 185, 109821. https://doi.org/10.1016/j.ymssp.2022.109821
- Zhang, H., Li, L., Ma, W., Luo, Y., Li, Z. and Kuai, H. (2022d), "Effects of welding residual stresses on fatigue reliability assessment of a PC beam bridge with corrugated steel webs under dynamic vehicle loading", Structures, 45, 1561-1572 https://doi.org/10.1016/j.istruc.2022.09.094.
- Zhang, H., Ouyang, Z., Li, L., Ma, W., Liu, Y., Chen, F. and Xiao, X. (2022c), "Numerical Study on Welding Residual Stress Distribution of Corrugated Steel Webs", Metals, 12(11), 1831. https://doi.org/10.3390/met12111831.
- Zhang, J., Li, C., Zhang, Y., Yang, M., Jia, D., Liu, G., Hou, Y., Li, R., Zhang, N., Wu, Q. and Cao, H. (2018), "Experimental assessment of an environmentally friendly grinding process using nanofluid minimum quantity lubrication with cryogenic air", J. Clean. Prod., 193, 236-248. https://doi.org/10.1016/j.jclepro.2018.05.009.
- Zhang, L., Chen, Z., Habibi, M., Ghabussi, A. and Alyous, R. (2021), "Low-velocity impact, resonance, and frequency responses of FG-GPLRC viscoelastic doubly curved panel", Compos. Struct., 269, 114000. https://doi.org/10.1016/j.compstruct.2021.114000.
- Zhang, L., Zhang, J., Wang, X., Tao, M., Dai, G., Wu, J. and Lin, X. (2022b), "Design of coherent wideband radiation process in a Nd3+-doped high entropy glass system", Light: Sci. & Appl., 11(1), 181. https://doi.org/10.1038/s41377-022-00848-y.
- Zhang, X.M., Liu, G.R. and Lam, K.Y. (2001), "Frequency analysis of cylindrical panels using a wave propagation approach", Appl. Acoust., 62(5), 527-543. https://doi.org/10.1016/S0003-682X(00)00059-1.
- Zhang, Y., Li, C., Ji, H., Yang, X., Yang, M., Jia, D., Zhang, X., Li, R. and Wang, J. (2017), "Analysis of grinding mechanics and improved predictive force model based on material-removal and plastic-stacking mechanisms", Int. J. Machine Tools Manufact., 122, 81-97. https://doi.org/10.1016/j.ijmachtools.2017.06.002.
- Zhang, Y., Li, C., Jia, D., Zhang, D. and Zhang, X. (2015), "Experimental evaluation of the lubrication performance of MoS2/CNT nanofluid for minimal quantity lubrication in Nibased alloy grinding", Int. J. Machine Tools Manufact., 99, 19-33. https://doi.org/10.1016/j.ijmachtools.2015.09.003.
- Zhang, Z., Du, M., Li, Y., Liu, W., Wu, H., Cui, L. and Li, M. (2022), "Effects of mooring configuration on the dynamic behavior of a TLP with tendon failure". Desalination. Water. Treat., 268, 215-228. https://doi.org/10.5004/dwt.2022.28692.
- Zhang, Z., Sui, M., Li, C., Zhou, Z., Liu, B., Chen, Y., Said, Z., Debnath, S. and Sharma, S. (2021), "Residual stress of MoS2 nano-lubricant grinding cemented carbide", Int. J. Adv. Manuf. Tech., https://doi.org/10.1007/s00170-022-08660-z.
- Zhao, R., Dai, H. and Yao, H. (2022), "Liquid-Metal Magnetic Soft Robot with Reprogrammable Magnetization and Stiffness", IEEE. Robot. Autom. Let., 7(2), 4535-4541. https://doi.org/10.1109/LRA.2022.3151164.
- Zhao, Y., Moradi, Z., Davoudi, M. and Zhuang, J. (2022), "Bending and stress responses of the hybrid axisymmetric system via state-space method and 3D-elasticity theory", Eng. Comput. 38, 939-961. https://doi.org/10.1007/s00366-020-01242-1.
- Zheng, X., Ni, Z., Xu, D., Wang, Z., Liu, M., Li, Y., Du, J. and Li, R. (2021), "New analytic buckling solutions of non-Levy-type cylindrical panels within the symplectic framework", Appl. Math. Modelling., 98, 398-415. https://doi.org/10.1016/j.apm.2021.05.017.
- Zheng, X., Sun, Y., Huang, M., An, D., Li, P., Wang, B. and Li, R. (2019), "Symplectic superposition method-based new analytic bending solutions of cylindrical shell panels", Int. J. Mech. Sci., 152, 432-442. https://doi.org/10.1016/j.ijmecsci.2019.01.012.
- Zhong, T., Wang, W., Lu, S., Dong, X. and Yang, B. (2022), "RMCHN: A Residual Modular Cascaded Heterogeneous Network for Noise Suppression in DAS-VSP Records", IEEE Geosci. Remote. Sensing. Let., 20. https://doi.org/10.1109/LGRS.2022.3229556.
- Zhou, C., Ni, Z., Zheng, X., Wang, B. and Li, R. (2022), "On new benchmark free vibration solutions of rectangular sandwich panels within the symplectic solution framework", J. Sandw. Struct. Mater., 1883-1904. https://doi.org/10.1177/10996362221106780.
- Zhou, Y., Stanciulescu, I., Eason, T. and Spottswood, M. (2015), "Nonlinear elastic buckling and postbuckling analysis of cylindrical panels", Finite. Elem. Anal., Des., 96, 41-50. https://doi.org/10.1016/j.finel.2014.12.001.