Acknowledgement
This research work was supported by the Science Engineering Research Board (SERB), Department of Science & Technology (DST), Government of India, File No: CRG/2021/005720.
References
- Gielen, D., Boshell, F., Saygin, D., Bazilian, M.D., Wagner, N., and Gorini, N., (2019), "The role of renewable energy in the global transformation", Ener. Strat. Rev., 24, 38-50, https://dx.doi.org/10.1016/j.esr.2019.01.006.
- Rehman, S., Rafique, M.M., Alam, M.M. and Alhems, L.M. (2019), "Vertical axis wind turbine types, efficiencies, and structural stability- A Review", Wind Struct., 29, 15-32, http://dx.doi.org/10.12989/was.2019.29.1.015.
- Howel, R., Qin, N., Edwards, J. and Durrani, N. (2010), "Wind tunnel and numerical study of a small vertical axis wind turbine", Ren. Ener., 35, 412-422. http://dx.doi.org/10.1016/j.renene.2009.07.025.
- Balduzzi, F., Bianchini, A., Carnevale, E.A., Ferrari, L. and Magnani, S. (2012), "Feasibility analysis of a Darrieus vertical-axis wind turbine installation in the rooftop of a building", App. Ener. 97, 92-929. http://dx.doi.org/10.1016/j.egypro.2016.11.062.
- Islam, M., Ting, D.S.K. and Fartaj, A. (2008), "Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbine", Ren. Sust. Ener. Rev., 12, 87-1109. https://doi.org/10.1016/j.rser.2006.10.023.
- BelMabrouk, I., ElHami, A., Walha, L., Zghal, B., and Haddar, M., (2017), "Dynamic vibrations in wind energy systems: Application to vertical axis wind turbine." Mech. Syst. Sig. Process., 85, 396-414. https://doi.org/10.1016/j.ymssp.2016.08.034.
- Sagharichi, A., Zamani, M. and Ghasemi, A. (2018), "Effect of solidity on the performance of variable pitch vertical axis wind turbine", Energy, 161, 753-775. https://doi.org/10.1016/j.energy.2018.07.160.
- Ferreira, C.J.S., Bijl, H., VanBussel, G. and Kuik, G.V., (2007), "Simulating dynamic stall in a 2D VAWT: modelling strategy, verification and validation with particle image velocimetry data", J. Phys., 75, 1742. https://doi.org/10.1088/1742-6596/75/1/012023.
- Sun, X., Zhu, J., Li, Z. and Sun. G. (2021), "Rotation improvement of vertical axis wind turbine by offsetting pitching angles and changing blade numbers", Energy, 215, 119177 https://doi.org/10.1016/j.energy.2020.119177.
- Guo, P. and Infield, D. (2012), "Wind turbine tower vibration modelling and monitoring by the nonlinear state estimation technique (NSET)", Energies, 5, 5279-5293. https://doi.org/10.3390/en5125279.
- Seyed, K.M. and Ali J.D. (2019), "Numerical optimization of a vertical axis wind turbine: case study at TMU campus", Wind Struct., 28, 191-201. http://dx.doi.org/10.12989/was.2019.28.3.191.
- Rahman, M.M. (2013), "Vortex method based analysis of trackbased wind turbines", Thesis, Indian Inst. of Techn. Bombay.
- Castellani, F., Astolfi, D., Peppoloni, M., Natili, F., Butta, D. and Hirschl, A. (2019), "Experimental vibration analysis of a smallscale vertical wind energy system for residential use", Machines, 7(2), 35. https://doi.org/10.3390/machines7020035.
- Natarajan, D.N.A. and Kelly, M., (2015), "Model of wind shear conditional on turbulence and its impact on wind turbine loads", Wind Ener., 18, 1917-1931. https://doi.org/10.1002/we.1797.
- Peng, Y.X., Xu, Y.L., Zhan, S., and Shum, K.M., (2019), "High-solidity straight-bladed vertical axis wind turbine: Aerodynamic force measurements", J. Wind Eng. Ind. Aero, 184, 34-38. https://doi.org/10.1016/j.jweia.2018.11.005.
- Lazaros, A., Mustafa, T., Yong, C. and Rajnish, K.C. (2013), "Computational study of a small-scale vertical axis wind turbine (VAWT): comparative performance of various turbulence models", Wind Struct., 17, 647-670. http://dx.doi.org/10.12989/was.2013.17.6.647.
- Nguyen, M.T., Balduzzi, F., Bianchini, A., Ferrara, G. and Goude, A. (2020), "Evaluation of the unsteady aerodynamic forces acting on a vertical-axis turbine by means of numerical simulations and open site experiments", J. Wind Eng. Ind. Aero., 198, 104093. https://doi.org/10.1016/j.jweia.2020.104093.
- McLaren, K., Tullis, S., and Ziada, S., (2012), "Measurement of high solidity vertical axis wind turbine aerodynamic loads under high vibration response conditions", J. Fluid. Struct., 32, 12-26. https://doi.org/10.1016/j.jfluidstructs.2012.01.001.
- Poguluri, S.K., Lee, H. and Bae Y.H. (2020), "An investigation on the aerodynamic performance of a co-axial contra-rotating vertical-axis wind turbine", Energy, 219, 119547. https://doi.org/10.1016/j.energy.2020.119547.
- Ferreira, C.J.S., Van, K. and Bussel, V. (2009), "Visualization by PIV of dynamic stall on a vertical axis wind turbine", Exp. Fluids., 46, 97-108. https://doi.org/10.1007/s00348-008-0543-z.
- Zhong, J., Li, J., Guo, P. and Wang, Y., (2019), "Dynamic stall control on a vertical axis wind turbine aerofoil using leading-edge rod", Energy, 174, 246-260. https://doi.org/10.1016/j.energy.2019.02.176.
- Shao, M., Wu, J., Wang, Y., and Wu, Q., (2019), "Nonlinear parametric vibration and chaotic behaviors of an axially accelerating moving membrane", Shoc. Vib. 96, 22. https://doi.org/10.1155/2019/6294814.
- Zhang, Z.L., Sichani, M.T., Li, J., Chen, B. and Nielsen, S.R.K. (2013), "Non-linear aeroelastic stability of wind turbines", Key. Eng. Mat., 569-570, 531-538. http://dx.doi.org/10.4028/www.scientific.net/KEM.569-570.531.
- Dai, L., Xia, D. and Chen, C. (2017), "Regular and nonlinear dynamics of horizontal axis wind turbine blades subjected to fluctuating wind loads", Ener. Procedia, 110, 529-536. https://doi.org/10.1016/j.egypro.2017.03.180.
- Seiji, U., S., Mitsui, T., Hirata, Y., Morie, T., Horio, Y. and Aihara, K. (2013), "Experimental distinction between chaotic and strange nonchaotic attractors on the basis of consistency", Chaos., 23, 023110. https://aip.scitation.org/doi/10.1063/1.4804181.
- Prasad, A., Negi, S.S. and Ramaswamy, R., (2001), "Strange nonchaotic attractors", Int. J. Bifur Chaos, 11, 2.
- Zhu, Z. and Liu, Z., (1997), "Strange non-chaotic attractors of CHUA'S circuit with quasiperiodic excitation", Int. J. Bifur. Chaos., 7, 227-238. https://people.eecs.berkeley.edu/~chua/papers/Zhu97.pdf. https://doi.org/10.1142/S0218127497000169
- Feudel, U., Kurths, J. and Pikovsky, A. (1995), "Birth of strange nonchaotic attractors due to interior crisis", Physica D Non. Lin. Pheno., 2, 180-190. https://doi.org/10.1016/S0167-2789(97)00168-1.
- Bondeson, A., Ott, E. and Antonsen, T.M., (1985), "Quasiperiodically forced damped pendula and schrodinger equations with quasiperiodic potentials: Implications of their equivalence", Phys. Rev. Lett., 55, 2103. https://doi.org/10.1103/PhysRevLett.55.2103.
- Ding, M. and Scott Kelso, K.A., (1994), "Phase-resetting map and the dynamics of quasi periodically forced biological oscillators", Int. J. Bifur. Chaos, 4, 553-567. https://doi.org/10.1142/S0218127494000393.
- Venkatesan, A., Lakshmanan, M., Prasad, A. and Ramaswamy, R. (2000), "Intermittency transitions to strange nonchaotic attractors in a quasiperiodically driven Duffing oscillator", Phys. Rev. E, 61, 364. https://doi.org/10.1103/PhysRevE.61.3641.
- Venkatesan A. and Lakshmanan, M. (1998), "Different routes to chaos via strange nonchaotic attractors in a quasiperiodically forced system", Phys. Rev. E, 58, 3008. https://doi.org/10.1103/PhysRevE.58.3008.
- Venkatesan, A., Murali, K. and Lakshmanan, M. (1999), "Birth of strange nonchaotic attractors through type III intermittency", Phys. Lett. A, 259, 246-253. http://14.139.186.108/jspui/bitstream/123456789/24063/1/birth%20stange%20non.pdf. 108/jspui/bitstream/123456789/24063/1/birth%20stange%20non.pdf
- Uenohara, S., Mitsui, T., Hirata Y., Morrie, T., Horik Y. and Aihara, K. (2013), "Experimental distinction between chaotic and strange nonchaotic attractors on the basis of consistency", Chaos, 23, 023110. https://doi.org/10.1063/1.4804181.
- Premraj, D., Samadhan, A., Pawar, Lipika, K. and Sujith, R.I. (2019), "Strange nonchaos in self-excited singing flames", Euro. Phys. Lett., 128, 54005. https://doi.org/10.1209/0295-5075/128/54005.
- Pikovsky, A.S., Zacks, M.A., Feudel U. and Kurths, J. (1995), "Singular continuous spectra in dissipative dynamics", Phys. Rev., 52, 285. https://doi.org/10.1103/PhysRevE.52.285.
- Gottwald G.A. and Melbourne, I. (2004), "A new test for chaos in deterministic systems", Proc. Roy. Soc. A., 460, 603. https://doi.org/10.1098/rspa.2003.1183.
- Gottwald G.A. and Melbourne, I. (2009), "On the implementation of the 0-1 test for chaos", J. Appl. Dyn. Syst., 8, 129. https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1137%2F080718851&v=a03feeba. https://doi.org/10.1137%2F080718851&v=a03feeba
- Gopal, R., Venkatesan, A. and Lakshmanan, M. (2013), "Applicability of 0-1 test for strange nonchaotic attractors", Chaos, 23, 023123. http://dx.doi.org/10.1063/1.4808254.
- Verkinderen, E., and Imam, B., (2015), "A simplified dynamic model for mast design of Darrieus vertical axis wind turbines (VAWTs)", Eng. Struct., 100, 564-576. http://dx.doi.org/10.1016/j.engstruct.2015.06.041.
- Mohamed, M.H., (2012), "Performance investigation of H-rotor Darrieus turbine with new airfoil shapes", Energy, 47, 522-530. http://doi.org./10.1016/j.energy.2012.08.044.
- Arunvinthan, S., Gopal, R., Chandrasekar, V.K. and Pillai, S.N. (2020), "Estimation of nonlinear surface pressure characteristics of aerofoil: A 0-1 test approach", Chaos, 30, 013116. https://doi.org/10.1063/1.5102154.
- Pikovsky, A.S. and Feudel, U., (1994), "Correlations and spectra of strange nonchaotic attractors", J. Phy. A Math Gen., 27, 5209-5219. https://iopscience.iop.org/article/10.1088/0305-4470/27/15/020.
- Yalc, T. and Lai, Y.C. (1997), "Bifurcation to strange nonchaotic attractors", Phys. Rev., 56, 1623. https://doi.org/10.1103/PhysRevE.56.1623.
- Ahmedov, A. and Ebrahimi, K.M. (2017), "Numerical simulation of foil with leading-edge tubercle for vertical-axis tidal-current turbine", Amer. J. Ener. Re., 5, 63-78. https://doi.org/10.15282/jmes.14.3.2020.02.0547.