DOI QR코드

DOI QR Code

Chaotic vibration characteristics of Vertical Axis Wind Turbine (VAWT) shaft system

  • C.B. Maheswaran (Turbulence and Flow Control Lab, School of Mechanical Engineering, SASTRA Deemed University) ;
  • R. Gopal (Centre for Nonlinear Science & Engineering, School of Electrical & Electronics Engineering, SASTRA Deemed University) ;
  • V.K. Chandrasekar (Centre for Nonlinear Science & Engineering, School of Electrical & Electronics Engineering, SASTRA Deemed University) ;
  • S. Nadaraja Pillai (Turbulence and Flow Control Lab, School of Mechanical Engineering, SASTRA Deemed University)
  • Received : 2021.06.05
  • Accepted : 2023.03.23
  • Published : 2023.03.25

Abstract

We study the progressive full-scale wind tunnel tests on a high solidity vertical axis wind turbine (VAWT) for various tip speeds and pitch angles to understand the VAWT shaft system's dynamics using 0-1 Test for chaos. We identify that while varying rotor speed (tip speed) of the turbine, the system's dynamics change from periodic to chaotic through quasiperiodic and strange non-chaotic (SNA) states. The present study is the first experimental evidence for the existence of these states in the VAWT shaft system to the best of our knowledge. Using the asymptotic growth value Kc in 0-1 test, when the turbine operates at the low tip speeds and high pitch angles for low incoming wind speeds, the system behaves periodic (Kc ≈ 0). However, when the incoming wind speed increases further the system's dynamics shift from periodic to chaotic vibrations through quasi-periodic and SNA. This phenomenon is due to the dynamic stalling of blades which induces chaotic vibration in the VAWT shaft system. Further, the singular continuous spectrum method validates the presence of SNA and differentiates the SNA from chaotic vibrations.

Keywords

Acknowledgement

This research work was supported by the Science Engineering Research Board (SERB), Department of Science & Technology (DST), Government of India, File No: CRG/2021/005720.

References

  1. Gielen, D., Boshell, F., Saygin, D., Bazilian, M.D., Wagner, N., and Gorini, N., (2019), "The role of renewable energy in the global transformation", Ener. Strat. Rev., 24, 38-50, https://dx.doi.org/10.1016/j.esr.2019.01.006.
  2. Rehman, S., Rafique, M.M., Alam, M.M. and Alhems, L.M. (2019), "Vertical axis wind turbine types, efficiencies, and structural stability- A Review", Wind Struct., 29, 15-32, http://dx.doi.org/10.12989/was.2019.29.1.015.
  3. Howel, R., Qin, N., Edwards, J. and Durrani, N. (2010), "Wind tunnel and numerical study of a small vertical axis wind turbine", Ren. Ener., 35, 412-422. http://dx.doi.org/10.1016/j.renene.2009.07.025.
  4. Balduzzi, F., Bianchini, A., Carnevale, E.A., Ferrari, L. and Magnani, S. (2012), "Feasibility analysis of a Darrieus vertical-axis wind turbine installation in the rooftop of a building", App. Ener. 97, 92-929. http://dx.doi.org/10.1016/j.egypro.2016.11.062.
  5. Islam, M., Ting, D.S.K. and Fartaj, A. (2008), "Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbine", Ren. Sust. Ener. Rev., 12, 87-1109. https://doi.org/10.1016/j.rser.2006.10.023.
  6. BelMabrouk, I., ElHami, A., Walha, L., Zghal, B., and Haddar, M., (2017), "Dynamic vibrations in wind energy systems: Application to vertical axis wind turbine." Mech. Syst. Sig. Process., 85, 396-414. https://doi.org/10.1016/j.ymssp.2016.08.034.
  7. Sagharichi, A., Zamani, M. and Ghasemi, A. (2018), "Effect of solidity on the performance of variable pitch vertical axis wind turbine", Energy, 161, 753-775. https://doi.org/10.1016/j.energy.2018.07.160.
  8. Ferreira, C.J.S., Bijl, H., VanBussel, G. and Kuik, G.V., (2007), "Simulating dynamic stall in a 2D VAWT: modelling strategy, verification and validation with particle image velocimetry data", J. Phys., 75, 1742. https://doi.org/10.1088/1742-6596/75/1/012023.
  9. Sun, X., Zhu, J., Li, Z. and Sun. G. (2021), "Rotation improvement of vertical axis wind turbine by offsetting pitching angles and changing blade numbers", Energy, 215, 119177 https://doi.org/10.1016/j.energy.2020.119177.
  10. Guo, P. and Infield, D. (2012), "Wind turbine tower vibration modelling and monitoring by the nonlinear state estimation technique (NSET)", Energies, 5, 5279-5293. https://doi.org/10.3390/en5125279.
  11. Seyed, K.M. and Ali J.D. (2019), "Numerical optimization of a vertical axis wind turbine: case study at TMU campus", Wind Struct., 28, 191-201. http://dx.doi.org/10.12989/was.2019.28.3.191.
  12. Rahman, M.M. (2013), "Vortex method based analysis of trackbased wind turbines", Thesis, Indian Inst. of Techn. Bombay.
  13. Castellani, F., Astolfi, D., Peppoloni, M., Natili, F., Butta, D. and Hirschl, A. (2019), "Experimental vibration analysis of a smallscale vertical wind energy system for residential use", Machines, 7(2), 35. https://doi.org/10.3390/machines7020035.
  14. Natarajan, D.N.A. and Kelly, M., (2015), "Model of wind shear conditional on turbulence and its impact on wind turbine loads", Wind Ener., 18, 1917-1931. https://doi.org/10.1002/we.1797.
  15. Peng, Y.X., Xu, Y.L., Zhan, S., and Shum, K.M., (2019), "High-solidity straight-bladed vertical axis wind turbine: Aerodynamic force measurements", J. Wind Eng. Ind. Aero, 184, 34-38. https://doi.org/10.1016/j.jweia.2018.11.005.
  16. Lazaros, A., Mustafa, T., Yong, C. and Rajnish, K.C. (2013), "Computational study of a small-scale vertical axis wind turbine (VAWT): comparative performance of various turbulence models", Wind Struct., 17, 647-670. http://dx.doi.org/10.12989/was.2013.17.6.647.
  17. Nguyen, M.T., Balduzzi, F., Bianchini, A., Ferrara, G. and Goude, A. (2020), "Evaluation of the unsteady aerodynamic forces acting on a vertical-axis turbine by means of numerical simulations and open site experiments", J. Wind Eng. Ind. Aero., 198, 104093. https://doi.org/10.1016/j.jweia.2020.104093.
  18. McLaren, K., Tullis, S., and Ziada, S., (2012), "Measurement of high solidity vertical axis wind turbine aerodynamic loads under high vibration response conditions", J. Fluid. Struct., 32, 12-26. https://doi.org/10.1016/j.jfluidstructs.2012.01.001.
  19. Poguluri, S.K., Lee, H. and Bae Y.H. (2020), "An investigation on the aerodynamic performance of a co-axial contra-rotating vertical-axis wind turbine", Energy, 219, 119547. https://doi.org/10.1016/j.energy.2020.119547.
  20. Ferreira, C.J.S., Van, K. and Bussel, V. (2009), "Visualization by PIV of dynamic stall on a vertical axis wind turbine", Exp. Fluids., 46, 97-108. https://doi.org/10.1007/s00348-008-0543-z.
  21. Zhong, J., Li, J., Guo, P. and Wang, Y., (2019), "Dynamic stall control on a vertical axis wind turbine aerofoil using leading-edge rod", Energy, 174, 246-260. https://doi.org/10.1016/j.energy.2019.02.176.
  22. Shao, M., Wu, J., Wang, Y., and Wu, Q., (2019), "Nonlinear parametric vibration and chaotic behaviors of an axially accelerating moving membrane", Shoc. Vib. 96, 22. https://doi.org/10.1155/2019/6294814.
  23. Zhang, Z.L., Sichani, M.T., Li, J., Chen, B. and Nielsen, S.R.K. (2013), "Non-linear aeroelastic stability of wind turbines", Key. Eng. Mat., 569-570, 531-538. http://dx.doi.org/10.4028/www.scientific.net/KEM.569-570.531.
  24. Dai, L., Xia, D. and Chen, C. (2017), "Regular and nonlinear dynamics of horizontal axis wind turbine blades subjected to fluctuating wind loads", Ener. Procedia, 110, 529-536. https://doi.org/10.1016/j.egypro.2017.03.180.
  25. Seiji, U., S., Mitsui, T., Hirata, Y., Morie, T., Horio, Y. and Aihara, K. (2013), "Experimental distinction between chaotic and strange nonchaotic attractors on the basis of consistency", Chaos., 23, 023110. https://aip.scitation.org/doi/10.1063/1.4804181.
  26. Prasad, A., Negi, S.S. and Ramaswamy, R., (2001), "Strange nonchaotic attractors", Int. J. Bifur Chaos, 11, 2.
  27. Zhu, Z. and Liu, Z., (1997), "Strange non-chaotic attractors of CHUA'S circuit with quasiperiodic excitation", Int. J. Bifur. Chaos., 7, 227-238. https://people.eecs.berkeley.edu/~chua/papers/Zhu97.pdf. https://doi.org/10.1142/S0218127497000169
  28. Feudel, U., Kurths, J. and Pikovsky, A. (1995), "Birth of strange nonchaotic attractors due to interior crisis", Physica D Non. Lin. Pheno., 2, 180-190. https://doi.org/10.1016/S0167-2789(97)00168-1.
  29. Bondeson, A., Ott, E. and Antonsen, T.M., (1985), "Quasiperiodically forced damped pendula and schrodinger equations with quasiperiodic potentials: Implications of their equivalence", Phys. Rev. Lett., 55, 2103. https://doi.org/10.1103/PhysRevLett.55.2103.
  30. Ding, M. and Scott Kelso, K.A., (1994), "Phase-resetting map and the dynamics of quasi periodically forced biological oscillators", Int. J. Bifur. Chaos, 4, 553-567. https://doi.org/10.1142/S0218127494000393.
  31. Venkatesan, A., Lakshmanan, M., Prasad, A. and Ramaswamy, R. (2000), "Intermittency transitions to strange nonchaotic attractors in a quasiperiodically driven Duffing oscillator", Phys. Rev. E, 61, 364. https://doi.org/10.1103/PhysRevE.61.3641.
  32. Venkatesan A. and Lakshmanan, M. (1998), "Different routes to chaos via strange nonchaotic attractors in a quasiperiodically forced system", Phys. Rev. E, 58, 3008. https://doi.org/10.1103/PhysRevE.58.3008.
  33. Venkatesan, A., Murali, K. and Lakshmanan, M. (1999), "Birth of strange nonchaotic attractors through type III intermittency", Phys. Lett. A, 259, 246-253. http://14.139.186.108/jspui/bitstream/123456789/24063/1/birth%20stange%20non.pdf. 108/jspui/bitstream/123456789/24063/1/birth%20stange%20non.pdf
  34. Uenohara, S., Mitsui, T., Hirata Y., Morrie, T., Horik Y. and Aihara, K. (2013), "Experimental distinction between chaotic and strange nonchaotic attractors on the basis of consistency", Chaos, 23, 023110. https://doi.org/10.1063/1.4804181.
  35. Premraj, D., Samadhan, A., Pawar, Lipika, K. and Sujith, R.I. (2019), "Strange nonchaos in self-excited singing flames", Euro. Phys. Lett., 128, 54005. https://doi.org/10.1209/0295-5075/128/54005.
  36. Pikovsky, A.S., Zacks, M.A., Feudel U. and Kurths, J. (1995), "Singular continuous spectra in dissipative dynamics", Phys. Rev., 52, 285. https://doi.org/10.1103/PhysRevE.52.285.
  37. Gottwald G.A. and Melbourne, I. (2004), "A new test for chaos in deterministic systems", Proc. Roy. Soc. A., 460, 603. https://doi.org/10.1098/rspa.2003.1183.
  38. Gottwald G.A. and Melbourne, I. (2009), "On the implementation of the 0-1 test for chaos", J. Appl. Dyn. Syst., 8, 129. https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1137%2F080718851&v=a03feeba. https://doi.org/10.1137%2F080718851&v=a03feeba
  39. Gopal, R., Venkatesan, A. and Lakshmanan, M. (2013), "Applicability of 0-1 test for strange nonchaotic attractors", Chaos, 23, 023123. http://dx.doi.org/10.1063/1.4808254.
  40. Verkinderen, E., and Imam, B., (2015), "A simplified dynamic model for mast design of Darrieus vertical axis wind turbines (VAWTs)", Eng. Struct., 100, 564-576. http://dx.doi.org/10.1016/j.engstruct.2015.06.041.
  41. Mohamed, M.H., (2012), "Performance investigation of H-rotor Darrieus turbine with new airfoil shapes", Energy, 47, 522-530. http://doi.org./10.1016/j.energy.2012.08.044.
  42. Arunvinthan, S., Gopal, R., Chandrasekar, V.K. and Pillai, S.N. (2020), "Estimation of nonlinear surface pressure characteristics of aerofoil: A 0-1 test approach", Chaos, 30, 013116. https://doi.org/10.1063/1.5102154.
  43. Pikovsky, A.S. and Feudel, U., (1994), "Correlations and spectra of strange nonchaotic attractors", J. Phy. A Math Gen., 27, 5209-5219. https://iopscience.iop.org/article/10.1088/0305-4470/27/15/020.
  44. Yalc, T. and Lai, Y.C. (1997), "Bifurcation to strange nonchaotic attractors", Phys. Rev., 56, 1623. https://doi.org/10.1103/PhysRevE.56.1623.
  45. Ahmedov, A. and Ebrahimi, K.M. (2017), "Numerical simulation of foil with leading-edge tubercle for vertical-axis tidal-current turbine", Amer. J. Ener. Re., 5, 63-78. https://doi.org/10.15282/jmes.14.3.2020.02.0547.