과제정보
The research described in this paper was financially supported by the National Natural Science Foundation of China (51978155, 52208481), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX22_0212), the Program of State Grid Jiangsu Electric Power Co., Ltd. (SGJSHY00XMJS2200187), and the China Scholarship Council (202106090213).
참고문헌
- Alipour, A., Sarkar, P., Dikshit, S., Razavi, A. and Jafari, M. (2020), "Analytical approach to characterize tornado-induced loads on lattice structures", J. Struct. Eng., 146, 04020108. https://doi.org/10.1061/(asce)st.1943-541x.0002660.
- Altalmas, A. and El Damatty, A. (2014), "Finite element modelling of self-supported transmission lines under tornado loading", Wind Struct., 18, 473-495. https://doi.org/10.12989/was.2014.18.5.473. ANSYS. Inc, (2018). Fluent19.2 Theory Guide.
- Baker, C.J. and Sterling, M. (2017), "Modelling wind fields and debris flight in tornadoes", J. Wind Eng. Ind. Aerod., 168, 312-321. https://doi.org/10.1016/j.jweia.2017.06.017.
- Baker, C.J. and Sterling, M. (2018), "The calculation of train stability in tornado winds", J. Wind Eng. Ind. Aerod., 176, 158-165. https://doi.org/10.1016/j.jweia.2018.03.022.
- Baker, G.L. (1981), Boundary Layers in Laminar Vortex Flows, Purdue University.
- Baker, G.L. and Church, C.R. (1979), "Measurements of core radii and peak velocities in modeled atmospheric vortices", J. Atmos. Sci., 36, 2413-2424. https://doi.org/10.1175/15200469(1979)036%3C2413:MOCRAP%3E2.0.CO;2.
- Bezabeh, M.A., Gairola, A., Bitsuamlak, G.T., Popovski, M. and Tesfamariam, S. (2018), "Structural performance of multi-story mass-timber buildings under tornado-like wind field", Eng. Struct., 177, 519-539. https://doi.org/10.1016/j.engstruct.2018.07.079.
- Cao, J., Ren, S., Cao, S. and Ge, Y. (2019), "Physical simulations on wind loading characteristics of streamlined bridge decks under tornado-like vortices", J. Wind Eng. Ind. Aerod., 189, 56-70. https://doi.org/10.1016/j.jweia.2019.03.019.
- Cao, S., Wang, J., Cao, J., Zhao, L. and Chen, X. (2015), "Experimental study of wind pressures acting on a cooling tower exposed to stationary tornado-like vortices", J. Wind Eng. Ind. Aerod., 145, 75-86. https://doi.org/10.1016/j.jweia.2015.06.004.
- Cao, S., Wang, M. and Cao, J. (2018a), "Numerical study of wind pressure on low-rise buildings induced by tornado-like flows", J. Wind Eng. Ind. Aerod., 183, 214-222. https://doi.org/10.1016/j.jweia.2018.10.023.
- Cao, S., Wang, M., Zhu, J., Cao, J., Tamura, T. and Yang, Q. (2018b), "Numerical investigation of effects of rotating downdraft on tornado-like-vortex characteristics", Wind Struct., 26, 115-128. https://doi.org/10.12989/was.2018.26.3.115.
- Davies-Jones, R. (2015), "A review of supercell and tornado dynamics", Atmospheric Res., 158-159, 274-291. https://doi.org/10.1016/j.atmosres.2014.04.007.
- Davies-Jones, R., Trapp, R.J. and Bluestein, H.B. (2001), "Tornadoes and tornadic storms", Meteorol. Monogr., 50, 167-222. https://doi.org/10.1175/0065-9401-28.50.167.
- Fujita, T.T. (1978). Workbook of Tornadoes and High Winds for Engineering Applications. University of Chicago, Chicago, Illinois, USA.
- Haan, F.L., Balaramudu, V.K. and Sarkar, P.P. (2007), "Tornado-induced wind loads on a low-rise building", J. Struct. Eng., 136, 106-116. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000093.
- Haan, F.L., Sarkar, P.P., Gallus, W.A. (2008), "Design, construction and performance of a large tornado simulator for wind engineering applications", Eng. Struct., 30, 1146-1159. https://doi.org/10.1016/j.engstruct.2007.07.010.
- Hamada, A. and El Damatty, A.A. (2016), "Behaviour of transmission line conductors under tornado wind", Wind Struct., 22, 369-391. https://doi.org/10.12989/was.2016.22.3.369.
- Hangan, H. and Kim, J. (2008), "Swirl ratio effects on tornado vortices in relation to the Fujita scale", Wind Struct., 11, 291-302. https://doi.org/10.12989/was.2008.11.4.291.
- Hao, J. and Wu, T. (2020), "Numerical analysis of a long-span bridge response to tornado-like winds", Wind Struct., 31, 459-472. https://doi.org/10.12989/was.2020.31.5.459.
- Harvey, B., Quinlan, K. and Chokshi, N. (2013), "Design-basis hurricane winds and missiles for nuclear power plants", 22nd Conference on Structural Mechanics in Reactor Technology, San Francisco, California, August.
- Hou, F. and Sarkar, P.P. (2020), "Aeroelastic model tests to study tall building vibration in boundary-layer and tornado winds", Eng. Struct., 207, 110259. https://doi.org/10.1016/j.engstruct.2020.110259.
- Huang, Q., Jiang, W.J. and Hong, H.P. (2021), "Development of a simple equivalent tornado wind profile for structural design and evaluation", J. Wind Eng. Ind. Aerod., 213, 104602. https://doi.org/10.1016/j.jweia.2021.104602.
- Ishihara, T. and Liu, Z., (2014), "Numerical study on dynamics of a tornado-like vortex with touching down by using the LES turbulence model", Wind Struct., 19, 89-111. https://doi.org/10.12989/was.2014.19.1.089.
- Kim, Y.C. and Matsui, M. (2017), "Analytical and empirical models of tornado vortices: A comparative study", J. Wind Eng. Ind. Aerod., 171, 230-247. https://doi.org/10.1016/j.jweia.2017.10.009.
- Kuai, L., Haan Jr, F.L., Gallus Jr, W.A. and Sarkar, P.P. (2008), "CFD simulations of the flow field of a laboratory-simulated tornado for parameter sensitivity studies and comparison with field measurements", Wind Struct., 11, 75-96. https://doi.org/10.12989/was.2008.11.2.075.
- Le, V. and Caracoglia, L., (2020), "Life-cycle cost analysis of a point-like structure subjected to tornadic wind loads", J. Struct. Eng., 146, 04019194. https://doi.org/10.1061/(asce)st.1943-541x.0002480.
- Leslie, L.M. and Holland, G. (1995), "On the bogussing of tropical cyclones in numerical models: A comparison of vortex profiles", Meteorol. Atmos. Phys., 56, 101-110. https://doi.org/10.1007/BF01022523.
- Lewellen, W., Lewellen, D. and Sykes, R. (1997), "Large-eddy simulation of a tornado's interaction with the surface", J. Atmos. Sci. 54, 581-605. https://doi.org/10.1175/15200469(1997)054%3C0581:LESOAT%3E2.0.CO;2.
- Lilly, D.K. (1992), "A proposed modification of the Germano subgrid-scale closure method", Phys. Fluid. A Fluid Dyn., 4, 633-635. https://doi.org/10.1063/1.858280.
- Liu, Z. and Ishihara, T. (2015a), "Numerical study of turbulent flow fields and the similarity of tornado vortices using large-eddy simulations", J. Wind Eng. Ind. Aerod., 145, 42-60. https://doi.org/10.1016/j.jweia.2015.05.008.
- Liu, Z. and Ishihara, T. (2015b), "A study of tornado induced mean aerodynamic forces on a gable-roofed building by the large eddy simulations", J. Wind Eng. Ind. Aerod., 146, 39-50. https://doi.org/10.1016/j.jweia.2015.08.002.
- Liu, Z., Zhang, C. and Ishihara, T. (2018), "Numerical study of the wind loads on a cooling tower by a stationary tornado-like vortex through LES", J. Fluid. Struct., 81, 656-672. https://doi.org/10.1016/j.jfluidstructs.2018.06.001.
- Luo, J., Liang, D. and Weiss, C. (2015), "Reconstruction of a near-surface tornado wind field from observed building damage", Wind Struct., 20, 389-404. https://doi.org/10.12989/was.2015.20.3.389.
- Matsui, M. and Tamura, Y. (2009), "Influence of swirl ratio and incident flow conditions on generation of tornado-like vortex", 5th European and African Conference on Wind Engineering, Florence, Italy, July.
- Mishra, A., James, D. and Letchford, C. (2008), "Physical simulation of a single-celled tornado-like vortex, Part B: Wind loading on a cubical model", J. Wind Eng. Ind. Aerod., 96, 1258-1273. https://doi.org/10.1016/j.jweia.2008.02.027.
- Nasir, Z. and Bitsuamlak, G.T. (2018), "Topographic effects on tornado-like vortex", Wind Struct., 27, 123-136. https://doi.org/10.12989/was.2018.27.2.123.
- Razavi, A. and Sarkar, P.P. (2018), "Laboratory investigation of the effects of translation on the near-ground tornado flow field", Wind Struct., 26, 179-190. https://doi.org/10.12989/was.2018.26.3.179.
- Refan, M., Hangan, H. and Wurman, J. (2014), "Reproducing tornadoes in laboratory using proper scaling", J. Wind Eng. Ind. Aerod., 135, 136-148. https://doi.org/10.1016/j.jweia.2014.10.008.
- Rotz, J., Yeh, G.C. and Bertwell, W. (1974), Tornado and Extreme Wind Design Criteria for Nuclear Power Plants, Bechtel Power Corp., San Francisco, California, USA.
- Sabareesh, G., Cao, S., Wang, J., Matsui, M. and Tamura, Y. (2018), "Effect of building proximity on external and internal pressures under tornado-like flow", Wind Struct., 26, 163-177. https://doi.org/10.12989/was.2018.26.3.163.
- Sarkar, P., Haan, F., Gallus Jr, W., Le, K. and Wurman, J. (2005), "Velocity measurements in a laboratory tornado simulator and their comparison with numerical and full-scale data", 37th Joint Meeting Panel on Wind and Seismic Effects, Tsukuba, May.
- Savory, E., Parke, G.A., Zeinoddini, M., Toy, N. and Disney, P. (2001), "Modelling of tornado and microburst-induced wind loading and failure of a lattice transmission tower", Eng. Struct., 23, 365-375. https://doi.org/10.1016/S0141-0296(00)00045-6.
- Scott, P.L. and Liang, D., (2015), "Evaluation of shelter performance following the 2013 Moore tornado", Wind Struct., 21, 369-381. https://doi.org/10.12989/was.2015.21.4.369.
- Selvam, R.P. and Millett, P.C. (2003), "Computer modeling of tornado forces on buildings", Wind Struct., 6, 209-220. https://doi.org/10.12989/was.2003.6.3.209.
- Sengupta, A., Haan, F.L., Sarkar, P.P. and Balaramudu, V. (2008), "Transient loads on buildings in microburst and tornado winds", J. Wind Eng. Ind. Aerod., 96, 2173-2187. https://doi.org/10.1016/j.jweia.2008.02.050.
- Smagorinsky, J. (1963), "General circulation experiments with the primitive equations: I. The basic experiment", Month. Weath. Rev., 91, 99-164. https://doi.org/10.1175/1520-0493(1963)091%3C0099:GCEWTP%3E2.3.CO;2.
- Tang, Z. and Zuo, D., (2018), "Effects of aspect ratio on laboratory simulation of tornado-like vortices", Wind Struct., 27, https://doi.org/10.12989/was.2018.27.2.111.
- Tao, T., Wang, H., Yao, C., Zou, Z. and Xu, Z., (2018), "Performance of structures and infrastructure facilities during an EF4 Tornado in Yancheng", Wind Struct., 27, 137-147. https://doi.org/10.12989/was.2018.27.2.137.
- Wang, M., Cao, S. and Cao, J. (2021), "POD-based analysis of time-resolved tornado-like vortices", Wind Struct., 33, 13-27. https://doi.org/10.12989/was.2021.33.1.013.
- Ward, N.B. (1972), "The exploration of certain features of tornado dynamics using a laboratory model", J. Atmos. Sci., 29, 1194-1204. https://doi.org/10.1175/15200469(1972)029%3C1194:TEOCFO%3E2.0.CO;2.
- Wen, Y.K. (1975), "Dynamic tornadic wind loads on tall buildings", J. Struct. Div., 101, 169-185. https://doi.org/10.1061/JSDEAG.0003967.
- Wood, V.T. and White, L.W. (2013), "A parametric wind-pressure relationship for rankine versus non-rankine cyclostrophic vortices", J. Atmos. Oceanic Technol., 30, 2850-2867. https://doi.org/10.1175/jtech-d-13-00041.1.
- Xu, R., Wu, F., Zhong, M., Li, X. and Ding, J., (2020), "Numerical investigation on the aerodynamics and dynamics of a high-speed train passing through a tornado-like vortex", J. Fluids Struct., 96, 103042. https://doi.org/10.1016/j.jfluidstructs.2020.103042.
- Xu, Z. and Hangan, H. (2009), "An inviscid solution for modeling of tornadolike vortices", J. Appl. Mech., 29, 3993-4005. https://doi.org/10.1115/1.3063632.
- Yousef, M.A., Selvam, P.R. and Prakash, J. (2018), "A comparison of the forces on dome and prism for straight and tornadic wind using CFD model", Wind Struct., 26, 369-382. https://doi.org/10.12989/was.2018.26.6.369.
- Yu, X., Zhao, J. and Fan, W. (2021), "Tornadoes in China: spatiotemporal distribution and environmental characteristics", J. Trop. Meteorol., 37, 681-692. https://doi.org/10.16032/j.issn.1004-4965.2021.064.
- Zhang, H., Wang, H., Xu, Z., Liu, Z. and Khoo, B.C. (2023), "Investigation of the fluctuating velocity in a single-cell tornado-like vortex based on coherent structure extraction", Phys. Fluids, 35, 015135. https://doi.org/10.1063/5.0133107.
- Zhu, H., Chen, J., Li, F., Bai, X., Wang, X., Wang, H. and Zheng, W. (2017), "Tornado hazard assessment for a nuclear power plant in China", Energy Proced., 127, 20-28. https://doi.org/10.1016/j.egypro.2017.08.091.