DOI QR코드

DOI QR Code

Cable sag-span ratio effect on the behavior of saddle membrane roofs under wind load

  • Hesham Zieneldin (Department of structural Engineering, Faculty of Engineering, Alexandria University) ;
  • Mohammed Heweity (Department of structural Engineering, Faculty of Engineering, Alexandria University) ;
  • Mohammed Abdelnabi (Department of structural Engineering, Faculty of Engineering, Alexandria University) ;
  • Ehab Hendy (Department of structural Engineering, Faculty of Engineering, Alexandria University)
  • Received : 2012.06.22
  • Accepted : 2023.02.27
  • Published : 2023.03.25

Abstract

Lightness and flexibility of membrane roofs make them very sensitive to any external load. One of the most important parameters that controls their behavior, especially under wind load is the sag/span ratio of edge cables. Based on the value of the pretension force in the edge cables and the horizontal projection of the actual area covered by the membrane, an optimized design range of cable sag/span ratios has been determined through carrying on several membrane form-finding analyses. Fully coupled fluid structure dynamic analyses of these membrane roofs are performed under wind load with several conditions using the CFD method. Through investigating the numerical results of these analyses, the behavior of membrane roofs with cables sag/span ratios selected from the previously determined optimized design range has been evaluated.

Keywords

References

  1. Attarwala, S.I., Agrawal, A. and Jhuvar, P. (2017), "The behavior of tensile fabric membrane structure", IRJET, 4(5), 1425-1430.
  2. Baiges, J. and Codina, R. (2010), "The fixed-mesh ALE approach applied to solid mechanics and fluid-structure interaction problems", Int. J. Numer. Meth. Eng., 81, 1529-1557. https://doi.org/10.1002/nme.2740.
  3. Bathe, K.J. and Gustavo, A. Ledezma (2007), "Benchmark problems for incompressible fluid flows with structural interactions", Comput. Struct., 85, 628-644. https://doi:10.1016/j.compstruc.2007.01.025.
  4. Berger, H. (1999), "Form and function of tensile structures for permanent buildings", Eng. Struct., 21, 669-679. https://doi.org/10.1016/S0141-0296(98)00022-4.
  5. Blazek, J. (2001), Computational Fluid Dynamics: Principles and Applications, Elsevier Science Ltd, Kidlington, Oxford, UK.
  6. Bletzinger, K.U. and Ramm, E. (1999), "A general finite element approach to the form finding of tensile structures by the updated reference strategy", Int. J. Space Struct., 14(2), 131-145. https://doi.org/10.1260/0266351991494759.
  7. Brian, F. and Marijke, M. (2004), European Design Guide for Tensile Surface Structures, TensiNet, Brussels, Belgium.
  8. Casquero, H., Zhang, Y.J., Bona-Casas, C., Dalcin, L. and Gomez, H. (2018), "Non-body-fitted fluid-structure interaction: Divergence-conforming B-splines, fully-implicit dynamics, and variational formulation", J. Comput. Phys., 374, 625-653. https://doi.org/10.1016/j.jcp.2018.07.020.
  9. Christoffer, A. and Daniel, A. (2011), "Fluid structure interaction: evaluation of two coupling techniques", Research Report No IDE1135; School of Information Science, Computer and Electrical Engineering, Halmstad, Sweden.
  10. Colliers, J., Mollaert, M., Degroote, J. and De Laet, L. (2019), "Pressure coefficient distributions for the design of hypar membrane roof and canopy structures", Proceedings of the TensiNet Symposium, Milan, Italy, June.
  11. COMSOL Blog (2017), Which Turbulence Model Should I Choose for My CFD Application; Comsol, Burlington, Massachusetts, United States. http://www.comsol.com
  12. COMSOL Inc. (2018), Comsol [Computer software]. Burlington, Massachusetts, United States.
  13. Craig, G.H. (2013), Tensile Fabric Structures, American Society of Civil Engineers, Reston, Virginia, USA.
  14. Day A.S. (1965), "An Introduction to Dynamic Relaxation", The Engineer, 219(5688), 218 -221.
  15. Dieringer, F.H. (2014), Numerical Methods for the Design and Analysis of Tensile Structures, Ph.D. Dissertation, Technical University of Munich, Munich.
  16. Donea, J., Huerta, A., Ponthot, J.P.H. and Rodriguez-Ferran A. (2004), "Arbitrary Lagrangian-Eulerian methods", Encyclopedia Comput. Mech., 1(14), 413-473. https://doi.org/10.1002/0470091355.ecm009.
  17. Dutta, S. and Ghosh, S. (2019), "Analysis and design of tensile membrane structures challenges and recommendations", Pract. Period. Struct. Des. Constr., 24(3), https://doi.10.1061/(ASCE)SC.1943-5576.0000426.
  18. Eberhard, H. (1972), Finite Element Analysis of Nonlinear Membrane Structures, Ph.D. Dissertation, University of California, Berkeley.
  19. Eugenio, O. and Bernard, K. (2008), Textile Composites and Inflatable Structures II, Springer, Barcelona,
  20. Gerry D'Anza (2010), IxForTen 4000 [Computer software]. Napoli, Italy.
  21. Gosling, P.D., Bridgens, B.N., Albrecht, A., Alpermann, H., Angeleri, A., Barnes, M. and Uhlemann, J. (2013), "Analysis and design of membrane structures: Results of a round robin exercise", Eng. Struct., 48, 313-328. http://dx.doi.org/10.1016/j.engstruct.2012.10.008.
  22. Haber, R. and Abel, J. (1982), "Initial equilibrium solution methods for cable reinforced membranes", Comput. Meth. Appl. Mech. Eng., 30, 263-284. https://doi.org/10.1016/0045-7825(82)90080-9.
  23. Han, S.E. and Hou, X.W. (2009), "Damping identification analysis of membrane structures under the wind load by wavelet transform", Architect. Res., 11(1), 7-14.
  24. Haug, E. and Powell, G.H. (1972), "Finite element analysis of nonlinear membrane structures", UCSESM 72-7, University of California.
  25. Hoffman, J., Jansson, J. and Johnson, C. (2016), "New theory of flight", J. Math. Fluid Mech. 18, 219-241. http://dx.doi.org/10.1007/s00021-015-0220-y.
  26. Llorens Duran, J.I.D. (2021), "The sag/span ratio effect", University of Catalonia, Spain. http://hdl.handle.net/2117/366421.
  27. Lorentzon, J. and Revstedt, J. (2020), "A numerical study of partitioned fluid-structure nteraction applied to a cantilever in incompressible turbulent flow", Int. J. Numer. Methods Eng., 121, 806-827. https://doi.10.1002/nme.6245.
  28. Lou, X., Liu, Z.H. and Song, S.Y. (2015). "Fsi numerical simulation for wind-induced dynamic response of tension membrane structures", Adv. Mater. Res., 1065, 1069-1073. https://doi.10.4028/www.scientific.net/AMR.1065-1069.1069.
  29. Luo, J.J. and Han, D.J. (2009), "3D wind-induced response analysis of a cable-membrane structure", J. Zhejiang. Univ. Sci. A, 10(3), 337-344. https://doi.org/10.1631/jzus.A0820430
  30. Philipp, B., Wuchner, R. and Bletzinger, K.U. (2016), "Advances in the form-finding of structural membranes", Procedia Eng., 155, 332-341. https://doi.10.1016/j.proeng.2016.08.036.
  31. Qilin, Z. and Zhaoyang, L. (2017), "Research on wind pressure and wind-induced vibration characteristics of expo axis cable-membrane structure by field measurement", VIII International Conference on Textile Composites and Inflatable Structures, Structural Membranes, Shanghai, China.
  32. Schek (1974), "The force density method of form-finding and computations of general networks", Comput. Method Appl. Mech. Eng., 3(1), 115-134. https://doi.org/10.1016/0045-7825(74)90045-0.
  33. Spenke, T., Hosters, N. and Behr, M. (2020), "A multi-vector interface quasi-Newton method with linear complexity for partitioned fluid-structure interaction", Comput. Methods Appl. Mech. Eng., 361. https://doi.org/10.1016/j.cma.2019.112810.
  34. Vuk, M. (2018), "Effects of point loads on membrane structures", Gradevinar, 70(12), 1033-1041. https://doi.org/10.14256/JCE.1670.2016.
  35. Zieneldin, H., Heweity, M., Abdelnaby, M. and Hendy, E. (2022), "Interaction dynamic analysis of flexible structures under wind load", Proceedings of 7th World Congress on Civil, Structural, and Environmental Engineering (CSEE'22), Lisbon, Portugal, Virtual Conference, April.
  36. Zorrilla, R., Rossi, R., Wuchner, R. and Onate, E. (2020), "An embedded Finite Element framework for the resolution of strongly coupled Fluid-Structure Interaction problems, Application to volumetric and membrane-like structures", Comput. Methods Appl. Mech. Eng., 368. https://doi.org/10.1016/j.cma.2020.113179.