References
- Attarwala, S.I., Agrawal, A. and Jhuvar, P. (2017), "The behavior of tensile fabric membrane structure", IRJET, 4(5), 1425-1430.
- Baiges, J. and Codina, R. (2010), "The fixed-mesh ALE approach applied to solid mechanics and fluid-structure interaction problems", Int. J. Numer. Meth. Eng., 81, 1529-1557. https://doi.org/10.1002/nme.2740.
- Bathe, K.J. and Gustavo, A. Ledezma (2007), "Benchmark problems for incompressible fluid flows with structural interactions", Comput. Struct., 85, 628-644. https://doi:10.1016/j.compstruc.2007.01.025.
- Berger, H. (1999), "Form and function of tensile structures for permanent buildings", Eng. Struct., 21, 669-679. https://doi.org/10.1016/S0141-0296(98)00022-4.
- Blazek, J. (2001), Computational Fluid Dynamics: Principles and Applications, Elsevier Science Ltd, Kidlington, Oxford, UK.
- Bletzinger, K.U. and Ramm, E. (1999), "A general finite element approach to the form finding of tensile structures by the updated reference strategy", Int. J. Space Struct., 14(2), 131-145. https://doi.org/10.1260/0266351991494759.
- Brian, F. and Marijke, M. (2004), European Design Guide for Tensile Surface Structures, TensiNet, Brussels, Belgium.
- Casquero, H., Zhang, Y.J., Bona-Casas, C., Dalcin, L. and Gomez, H. (2018), "Non-body-fitted fluid-structure interaction: Divergence-conforming B-splines, fully-implicit dynamics, and variational formulation", J. Comput. Phys., 374, 625-653. https://doi.org/10.1016/j.jcp.2018.07.020.
- Christoffer, A. and Daniel, A. (2011), "Fluid structure interaction: evaluation of two coupling techniques", Research Report No IDE1135; School of Information Science, Computer and Electrical Engineering, Halmstad, Sweden.
- Colliers, J., Mollaert, M., Degroote, J. and De Laet, L. (2019), "Pressure coefficient distributions for the design of hypar membrane roof and canopy structures", Proceedings of the TensiNet Symposium, Milan, Italy, June.
- COMSOL Blog (2017), Which Turbulence Model Should I Choose for My CFD Application; Comsol, Burlington, Massachusetts, United States. http://www.comsol.com
- COMSOL Inc. (2018), Comsol [Computer software]. Burlington, Massachusetts, United States.
- Craig, G.H. (2013), Tensile Fabric Structures, American Society of Civil Engineers, Reston, Virginia, USA.
- Day A.S. (1965), "An Introduction to Dynamic Relaxation", The Engineer, 219(5688), 218 -221.
- Dieringer, F.H. (2014), Numerical Methods for the Design and Analysis of Tensile Structures, Ph.D. Dissertation, Technical University of Munich, Munich.
- Donea, J., Huerta, A., Ponthot, J.P.H. and Rodriguez-Ferran A. (2004), "Arbitrary Lagrangian-Eulerian methods", Encyclopedia Comput. Mech., 1(14), 413-473. https://doi.org/10.1002/0470091355.ecm009.
- Dutta, S. and Ghosh, S. (2019), "Analysis and design of tensile membrane structures challenges and recommendations", Pract. Period. Struct. Des. Constr., 24(3), https://doi.10.1061/(ASCE)SC.1943-5576.0000426.
- Eberhard, H. (1972), Finite Element Analysis of Nonlinear Membrane Structures, Ph.D. Dissertation, University of California, Berkeley.
- Eugenio, O. and Bernard, K. (2008), Textile Composites and Inflatable Structures II, Springer, Barcelona,
- Gerry D'Anza (2010), IxForTen 4000 [Computer software]. Napoli, Italy.
- Gosling, P.D., Bridgens, B.N., Albrecht, A., Alpermann, H., Angeleri, A., Barnes, M. and Uhlemann, J. (2013), "Analysis and design of membrane structures: Results of a round robin exercise", Eng. Struct., 48, 313-328. http://dx.doi.org/10.1016/j.engstruct.2012.10.008.
- Haber, R. and Abel, J. (1982), "Initial equilibrium solution methods for cable reinforced membranes", Comput. Meth. Appl. Mech. Eng., 30, 263-284. https://doi.org/10.1016/0045-7825(82)90080-9.
- Han, S.E. and Hou, X.W. (2009), "Damping identification analysis of membrane structures under the wind load by wavelet transform", Architect. Res., 11(1), 7-14.
- Haug, E. and Powell, G.H. (1972), "Finite element analysis of nonlinear membrane structures", UCSESM 72-7, University of California.
- Hoffman, J., Jansson, J. and Johnson, C. (2016), "New theory of flight", J. Math. Fluid Mech. 18, 219-241. http://dx.doi.org/10.1007/s00021-015-0220-y.
- Llorens Duran, J.I.D. (2021), "The sag/span ratio effect", University of Catalonia, Spain. http://hdl.handle.net/2117/366421.
- Lorentzon, J. and Revstedt, J. (2020), "A numerical study of partitioned fluid-structure nteraction applied to a cantilever in incompressible turbulent flow", Int. J. Numer. Methods Eng., 121, 806-827. https://doi.10.1002/nme.6245.
- Lou, X., Liu, Z.H. and Song, S.Y. (2015). "Fsi numerical simulation for wind-induced dynamic response of tension membrane structures", Adv. Mater. Res., 1065, 1069-1073. https://doi.10.4028/www.scientific.net/AMR.1065-1069.1069.
- Luo, J.J. and Han, D.J. (2009), "3D wind-induced response analysis of a cable-membrane structure", J. Zhejiang. Univ. Sci. A, 10(3), 337-344. https://doi.org/10.1631/jzus.A0820430
- Philipp, B., Wuchner, R. and Bletzinger, K.U. (2016), "Advances in the form-finding of structural membranes", Procedia Eng., 155, 332-341. https://doi.10.1016/j.proeng.2016.08.036.
- Qilin, Z. and Zhaoyang, L. (2017), "Research on wind pressure and wind-induced vibration characteristics of expo axis cable-membrane structure by field measurement", VIII International Conference on Textile Composites and Inflatable Structures, Structural Membranes, Shanghai, China.
- Schek (1974), "The force density method of form-finding and computations of general networks", Comput. Method Appl. Mech. Eng., 3(1), 115-134. https://doi.org/10.1016/0045-7825(74)90045-0.
- Spenke, T., Hosters, N. and Behr, M. (2020), "A multi-vector interface quasi-Newton method with linear complexity for partitioned fluid-structure interaction", Comput. Methods Appl. Mech. Eng., 361. https://doi.org/10.1016/j.cma.2019.112810.
- Vuk, M. (2018), "Effects of point loads on membrane structures", Gradevinar, 70(12), 1033-1041. https://doi.org/10.14256/JCE.1670.2016.
- Zieneldin, H., Heweity, M., Abdelnaby, M. and Hendy, E. (2022), "Interaction dynamic analysis of flexible structures under wind load", Proceedings of 7th World Congress on Civil, Structural, and Environmental Engineering (CSEE'22), Lisbon, Portugal, Virtual Conference, April.
- Zorrilla, R., Rossi, R., Wuchner, R. and Onate, E. (2020), "An embedded Finite Element framework for the resolution of strongly coupled Fluid-Structure Interaction problems, Application to volumetric and membrane-like structures", Comput. Methods Appl. Mech. Eng., 368. https://doi.org/10.1016/j.cma.2020.113179.