DOI QR코드

DOI QR Code

KPNA3 promotes epithelial-mesenchymal transition by regulating TGF-β and AKT signaling pathways in MDA-MB-231, a triple-negative breast cancer cell line

  • Jaesung Choi (Department of Life Science, College of Natural Sciences, Chung-Ang University) ;
  • Jee-Hye Choi (Department of Life Science, College of Natural Sciences, Chung-Ang University) ;
  • Ho Woon Lee (Department of Life Science, College of Natural Sciences, Chung-Ang University) ;
  • Dongbeom Seo (Department of Life Science, College of Natural Sciences, Chung-Ang University) ;
  • Gavaachimed Lkhagvasuren (Department of Science of Cultural Heritage, Graduate School, Chung-Ang University) ;
  • Jung-Woong Kim (Department of Life Science, College of Natural Sciences, Chung-Ang University) ;
  • Sang-Beom Seo (Department of Life Science, College of Natural Sciences, Chung-Ang University) ;
  • Kangseok Lee (Department of Life Science, College of Natural Sciences, Chung-Ang University) ;
  • Kwang-Ho Lee (Department of Life Science, College of Natural Sciences, Chung-Ang University)
  • Received : 2022.11.08
  • Accepted : 2022.12.29
  • Published : 2023.02.28

Abstract

Karyopherin-α3 (KPNA3), a karyopherin-α isoform, is intimately associated with metastatic progression via epithelial-mesenchymal transition (EMT). However, the molecular mechanism underlying how KPNA3 acts as an EMT inducer remains to be elucidated. In this report, we identified that KPNA3 was significantly upregulated in cancer cells, particularly in triple-negative breast cancer, and its knockdown resulted in the suppression of cell proliferation and metastasis. The comprehensive transcriptome analysis from KPNA3 knockdown cells indicated that KPNA3 is involved in the regulation of numerous EMT-related genes, including the downregulation of GATA3 and E-cadherin and the up-regulation of HAS2. Moreover, it was found that KPNA3 EMT-mediated metastasis can be achieved by TGF-β or AKT signaling pathways; this suggests that the novel independent signaling pathways KPNA3-TGF-β-GATA3-HAS2/E-cadherin and KPNA3-AKT-HAS2/E-cadherin are involved in the EMT-mediated progress of TNBC MDA-MB-231 cells. These findings provide new insights into the divergent EMT inducibility of KPNA3 according to cell and cancer type.

Keywords

Acknowledgement

This research was supported by the Chung-Ang University Graduate Research Scholarship in 2017.

References

  1. Nieto MA, Huang RY, Jackson RA and Thiery JP (2016) Emt: 2016. Cell 166, 21-45 https://doi.org/10.1016/j.cell.2016.06.028
  2. Lamouille S, Xu J and Derynck R (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15, 178-196 https://doi.org/10.1038/nrm3758
  3. Cingolani G, Petosa C, Weis K and Muller CW (1999) Structure of importin-beta bound to the IBB domain of importin-alpha. Nature 399, 221-229 https://doi.org/10.1038/20367
  4. Mehmood R, Jibiki K, Shibazaki N and Yasuhara N (2021) Molecular profiling of nucleocytoplasmic transport factor genes in breast cancer. Heliyon 7, e06039
  5. Hu B, Cheng JW, Hu JW et al (2019) KPNA3 confers sorafenib resistance to advanced hepatocellular carcinoma via TWIST regulated epithelial-mesenchymal transition. J Cancer 10, 3914-3925 https://doi.org/10.7150/jca.31448
  6. Groger CJ, Grubinger M, Waldhor T, Vierlinger K and Mikulits W (2012) Meta-analysis of gene expression signatures defining the epithelial to mesenchymal transition during cancer progression. PLoS One 7, e51136
  7. Dai X, Cheng H, Bai Z and Li J (2017) Breast cancer cell line classification and its relevance with breast tumor subtyping. J Cancer 8, 3131-3141 https://doi.org/10.7150/jca.18457
  8. Yan W, Cao QJ, Arenas RB, Bentley B and Shao R (2010) GATA3 inhibits breast cancer metastasis through the reversal of epithelial-mesenchymal transition. J Biol Chem 285, 14042-14051 https://doi.org/10.1074/jbc.M110.105262
  9. Liu S, Chen S and Zeng J (2018) TGF-β signaling: A complex role in tumorigenesis (review). Mol Med Rep 17, 699-704
  10. Caon I, Bartolini B, Parnigoni A et al (2020) Revisiting the hallmarks of cancer: the role of hyaluronan. Semin Cancer Biol 62, 9-19 https://doi.org/10.1016/j.semcancer.2019.07.007
  11. Matsumoto K, Shionyu M, Go M et al (2003) Distinct interaction of versican/PG-M with hyaluronan and link protein. J Biol Chem 278, 41205-41212 https://doi.org/10.1074/jbc.M305060200
  12. Graziani G and Lacal PM (2015) Neuropilin-1 as therapeutic target for malignant melanoma. Front Oncol 5, 125
  13. Li J, Swope D, Raess N, Cheng L, Muller EJ and Radice GL (2011) Cardiac tissue-restricted deletion of plakoglobin results in progressive cardiomyopathy and activation of β-catenin signaling. Mol Cell Biol 31, 1134-1144 https://doi.org/10.1128/MCB.01025-10
  14. Yang J and Weinberg RA (2008) Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14, 818-829 https://doi.org/10.1016/j.devcel.2008.05.009
  15. Radisky ES and Radisky DC (2010) Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer. J Mammary Gland Biol Neoplasia 15, 201-212 https://doi.org/10.1007/s10911-010-9177-x
  16. Geervliet E and Bansal R (2020) Matrix metalloproteinases as potential biomarkers and therapeutic targets in liver diseases. Cells 9, 1212
  17. Liu S, Ren J and Ten Dijke P (2021) Targeting TGFβ signal transduction for cancer therapy. Signal Transduct Target Ther 6, 8
  18. Heath VL, Murphy EE, Crain C, Tomlinson MG and O'Garra A (2000) TGF-β1 down-regulates Th2 development and results in decreased IL-4-induced STAT6 activation and GATA-3 expression. Eur J Immunol 30, 2639-2649 https://doi.org/10.1002/1521-4141(200009)30:9<2639::AID-IMMU2639>3.0.CO;2-7
  19. Zhang YE (2009) Non-Smad pathways in TGF-β signaling. Cell Res 19, 128-139 https://doi.org/10.1038/cr.2008.328
  20. Zhu X, Wang K and Chen Y (2020) Ophiopogonin D suppresses TGF-β1-mediated metastatic behavior of MDAMB-231 breast carcinoma cells via regulating ITGB1/FAK/Src/AKT/β-catenin/MMP-9 signaling axis. Toxicol In Vitro 69, 104973
  21. Boldbaatar A, Lee S, Han S et al (2017) Eupatolide inhibits the TGF-β1-induced migration of breast cancer cells via downregulation of SMAD3 phosphorylation and transcriptional repression of ALK5. Oncol Lett 14, 6031-6039 https://doi.org/10.3892/ol.2017.6957