Acknowledgement
This research was supported by the Chung-Ang University Graduate Research Scholarship in 2017.
References
- Nieto MA, Huang RY, Jackson RA and Thiery JP (2016) Emt: 2016. Cell 166, 21-45 https://doi.org/10.1016/j.cell.2016.06.028
- Lamouille S, Xu J and Derynck R (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15, 178-196 https://doi.org/10.1038/nrm3758
- Cingolani G, Petosa C, Weis K and Muller CW (1999) Structure of importin-beta bound to the IBB domain of importin-alpha. Nature 399, 221-229 https://doi.org/10.1038/20367
- Mehmood R, Jibiki K, Shibazaki N and Yasuhara N (2021) Molecular profiling of nucleocytoplasmic transport factor genes in breast cancer. Heliyon 7, e06039
- Hu B, Cheng JW, Hu JW et al (2019) KPNA3 confers sorafenib resistance to advanced hepatocellular carcinoma via TWIST regulated epithelial-mesenchymal transition. J Cancer 10, 3914-3925 https://doi.org/10.7150/jca.31448
- Groger CJ, Grubinger M, Waldhor T, Vierlinger K and Mikulits W (2012) Meta-analysis of gene expression signatures defining the epithelial to mesenchymal transition during cancer progression. PLoS One 7, e51136
- Dai X, Cheng H, Bai Z and Li J (2017) Breast cancer cell line classification and its relevance with breast tumor subtyping. J Cancer 8, 3131-3141 https://doi.org/10.7150/jca.18457
- Yan W, Cao QJ, Arenas RB, Bentley B and Shao R (2010) GATA3 inhibits breast cancer metastasis through the reversal of epithelial-mesenchymal transition. J Biol Chem 285, 14042-14051 https://doi.org/10.1074/jbc.M110.105262
- Liu S, Chen S and Zeng J (2018) TGF-β signaling: A complex role in tumorigenesis (review). Mol Med Rep 17, 699-704
- Caon I, Bartolini B, Parnigoni A et al (2020) Revisiting the hallmarks of cancer: the role of hyaluronan. Semin Cancer Biol 62, 9-19 https://doi.org/10.1016/j.semcancer.2019.07.007
- Matsumoto K, Shionyu M, Go M et al (2003) Distinct interaction of versican/PG-M with hyaluronan and link protein. J Biol Chem 278, 41205-41212 https://doi.org/10.1074/jbc.M305060200
- Graziani G and Lacal PM (2015) Neuropilin-1 as therapeutic target for malignant melanoma. Front Oncol 5, 125
- Li J, Swope D, Raess N, Cheng L, Muller EJ and Radice GL (2011) Cardiac tissue-restricted deletion of plakoglobin results in progressive cardiomyopathy and activation of β-catenin signaling. Mol Cell Biol 31, 1134-1144 https://doi.org/10.1128/MCB.01025-10
- Yang J and Weinberg RA (2008) Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14, 818-829 https://doi.org/10.1016/j.devcel.2008.05.009
- Radisky ES and Radisky DC (2010) Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer. J Mammary Gland Biol Neoplasia 15, 201-212 https://doi.org/10.1007/s10911-010-9177-x
- Geervliet E and Bansal R (2020) Matrix metalloproteinases as potential biomarkers and therapeutic targets in liver diseases. Cells 9, 1212
- Liu S, Ren J and Ten Dijke P (2021) Targeting TGFβ signal transduction for cancer therapy. Signal Transduct Target Ther 6, 8
- Heath VL, Murphy EE, Crain C, Tomlinson MG and O'Garra A (2000) TGF-β1 down-regulates Th2 development and results in decreased IL-4-induced STAT6 activation and GATA-3 expression. Eur J Immunol 30, 2639-2649 https://doi.org/10.1002/1521-4141(200009)30:9<2639::AID-IMMU2639>3.0.CO;2-7
- Zhang YE (2009) Non-Smad pathways in TGF-β signaling. Cell Res 19, 128-139 https://doi.org/10.1038/cr.2008.328
- Zhu X, Wang K and Chen Y (2020) Ophiopogonin D suppresses TGF-β1-mediated metastatic behavior of MDAMB-231 breast carcinoma cells via regulating ITGB1/FAK/Src/AKT/β-catenin/MMP-9 signaling axis. Toxicol In Vitro 69, 104973
- Boldbaatar A, Lee S, Han S et al (2017) Eupatolide inhibits the TGF-β1-induced migration of breast cancer cells via downregulation of SMAD3 phosphorylation and transcriptional repression of ALK5. Oncol Lett 14, 6031-6039 https://doi.org/10.3892/ol.2017.6957