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Nitrogen (N) is an essential macronutrient required for plant 
growth and crop production. However, N in soil is usually 
insufficient for plant growth. Thus, chemical N fertilizer has 
been extensively used to increase crop production. Due to 
negative effects of N rich fertilizer on the environment, impro-
ving N usage has been a major issue in the field of plant 
science to achieve sustainable production of crops. For that 
reason, many efforts have been made to elucidate how plants 
regulate N uptake and utilization according to their surround-
ing habitat over the last 30 years. Here, we provide recent ad-
vances focusing on regulation of N uptake, allocation of N by 
N transporting system, and signaling pathway controlling N 
responses in plants. [BMB Reports 2023; 56(2): 56-64]

INTRODUCTION

Nitrogen (N) is one of the macronutrients required for plant 
growth and development as it is a component of amino acids 
and plant metabolites (1-3). Amino acids not only function as 
units of protein, but also function as N donors for many 
biological compounds including nucleic acids, hormones, and 
chlorophylls (4-6). Plants uptake N sources in forms of in-
organic N (nitrate and ammonium) or organic N (amino acids 
and peptides) (1, 7). Among them, inorganic N is the major 
source of N acquisition in plants from the environment (7, 8). 
However, residual N source in natural conditions is generally 
insufficient for plants, especially crop plants. To overcome the 
shortage of N in agricultural fields, additional application of N 
source in a form of chemical fertilizer has been extensively 
used to maximize growth and reproduction of plants (9). Plants 
then absorb nutrients using their own uptake systems. The 

problem is that plants can only partially absorb fertilizers from 
the soil. Residual fertilizer is released to the environment (10, 
11). Fertilizers released often increase active nutrients in the 
environment, leading to abnormal growth conditions for indi-
genous organisms. These alterations can cause several environ-
mental problems such as soil acidification and eutrophication. 
For these reasons, development of plants with improved nu-
trient use efficiency has been regarded as a strategy to reduce 
N input and release of N to the environment while main-
taining plant performance and productivity (1, 11, 12). To 
achieve this goal, precise understanding of the mechanisms by 
which plants utilize N from their habitat is essential. N use 
efficiency of plants can be determined by major N metabolic 
processes consisting of N uptake, utilization, and mobilization 
(1). Here we summarize current our understandings on bio-
logical functions of N transporters and N-mediated signaling 
pathways.

FUNCTIONS OF NITRATE TRANSPORTERS AND THEIR 
REGULATION FOR N ACQUISITION

To absorb inorganic N forms from soils, plants require nitrate 
and ammonium transporters expressed in roots. Nitrate acqui-
sition is achieved by two nitrogen uptake systems consisting of 
a low-affinity transporter system (LATS) and a high-affinity tran-
sporter system (HATS) based on their affinity toward N (13, 
14). These nitrogen uptake systems involve multiple genes 
belonging to nitrate transporter 1 (NRT1), nitrate transporter 2 
(NRT2), ammonium transporter 1 (AMT1), Ammonium tran-
sporter 2 (AMT2) (15, 16). 

NRT1 members have been identified as low affinity tran-
sporters for nitrate except for AtNTR1.1 whose nitrate affinity 
is changed by post-translational modification. AtNRT1.1 was 
the first plant nitrate transporter identified from Arabidopsis 
through chlorate resistance screening with T-DNA insertional 
mutants (17). AtNRT1.1 was originally identified as a gene 
involved in low-affinity nitrogen transport. Later it was found 
that AtNRT1.1 could also function as a high-affinity nitrogen 
transporter (18). The functional conversion of AtNTR1.1 is 
controlled by phosphorylation on Thr-101. Dephosphorylated 
AtNRT1.1 functions as a low-affinity transporter. However, 

BMB Rep. 2023; 56(2): 56-64
www.bmbreports.org

Invited Mini Review



 Nitrogen signaling in plants
Su Jeong Choi, et al.

57http://bmbreports.org BMB Reports

Fig. 1. N uptake and signaling pathway in plants. Plants uptake 
nitrate (NO3

−) through NRT transporters. NRT1.1 is dual affinity ni-
trate transporter, whose affinity is changed by phosphorylation through 
CIPK23 and CBL1/9. In addition to nitrate uptake, NRT1.1 gene-
rates calcium (Ca2+) signaling through Phospholipase c (PLC). Ca2+

induces CPK-dependent phosphorylation of NLP6/7 transcription 
factors, leading to nuclear accumulation of NLP6/7. HBI also accel-
erates nuclear accumulation of NLP6/7 by reducing cellular reac-
tive oxygen species (ROS) level. Nuclear localized NLP6/7 interact 
with NRG2 and TCP20 to activate expression of N-responsive genes. 
NLP2, ANR1, and TGA1/4 act as positive regulator for N-respon-
sive genes. In contrast, LBDs, NIGT1, and IWS1 negatively regulate 
expression of N-responsive genes. NRT2.1 is a high affinity nitrate 
transporter, and phosphorylation inactivates NRT2.1 under high N 
conditions. NRT2.1 phosphorylation was removed by CEPD-induced 
phosphatase (CEPH) under N starvation condition, activating NRT2.1 
dependent nitrate uptake. Ammonium transporter 1;1 (AMT1;1) is 
responsible for ammonium (NH4

+) uptake. AMT1;1 is inactivated by 
phosphorylation through CIPK23 and ACTPK1 under high NH4

+

conditions to inhibit toxic accumulation of NH4
+ in cells. The figure 

was created with Biorender.com.

phosphorylation of Thr-101 can changes AtNTR1.1 to be a 
high-affinity transporter (13, 19). Similarly, MtNRT1.3 was 
identified as a dual-affinity nitrate transporter from Medicago 
truncatula (20). Functional conversion of AtNRT1.1 by phos-
phorylation can be further explained by its structural property. 
AtNRT1.1 can form homodimers through their N-terminal half 
facing. Phosphorylation of Thr-101 can interfere with AtNRT1.1 
dimer formation (21). Under high nitrogen conditions, dephos-
phorylated AtNRT1.1 can form a homodimer suitable for low- 
affinity nitrate uptake, while low N-mediated phosphorylation 
of AtNRT1.1 triggers conversion of AtNRT1.1 to a monomer, 
switching it to a high-affinity transporter. This regulatory me-
chanism of AtNRT1.1 allows rapid adaptation of plants to 
changing nitrate conditions. For successful operation of the 
system, phosphorylation of AtNRT1.1 has to be actively re-
gulated according to nitrogen conditions. Phosphorylation of 
AtNRT1.1 is known to be controlled by calcium signaling. 
Calcium dependent kinase AtCIPK23 can interact with AtCBL9 
or AtCBL1, phosphorylating AtNRT1.1 under low-nitrate con-
ditions (19). Based on this observation, it has been proposed 
that calcium can act as a secondary messenger in N signaling 
(22, 23). Nitrate treatment can induce rapid accumulation of 
cytosolic calcium levels. AtNRT1.1 is required for N-mediated 
calcium wave (23, 24). Suppression of calcium accumulation 
by calcium channel blockers or phospholipase C inhibitor 
treatment greatly changed the expression of nitrogen-respon-
sive genes (24). N-mediated calcium wave can induce tran-
scriptional regulation of nitrogen responsive genes involved in 
N uptake, metabolism, and signaling. Calcium mediated tran-
scriptional regulation is controlled by calcium sensor protein 
kinases (CPKs) mainly through phosphorylation of NIN-LIKE 
PROTEINs (NLPs) (23). Phosphorylation at Ser-205 in AtNLP7 
increases under high nitrate conditions, leading to its nuclear 
localization and activation of N-responsive gene expression 
(23). In addition to calcium signaling, ABA signaling also 
participates in phosphorylation of AtNRT1.1. AtABI2 interacts 
with AtCIPK and AtCBL1 to dephosphorylate them, thereby 
interfering with phosphorylation of AtNRT1.1 (25). In addition 
to nitrate transporter, AtNRT1.1 also mediates N signaling 
through regulation of AtNRT2.1 and AtANR1 expression (26, 
27). Due to affinity change and functions in signaling of 
AtNRT1.1, it has been proposed that AtNRT1.1 can function as 
a N transceptor (a portmanteau of transporter and receptor). 
This idea is further supported by the finding that mutation at 
Pro-492 to Lys can uncouple transporting and sensing activity 
of AtNRT1.1 (19).

In contrast to NRT1, NRT2 members are known to be high- 
affinity transporters. Different from NRT1 transporters, NRT2 
transporters generally require another component, NAR protein, 
for their functions (28, 29). In Arabidopsis, all AtNRT2 tran-
sporters except AtNRT2.7 can form a complex with AtNAR2.1 
(28, 29). Similarly, three OsNRT2s require OsNAR2.1 for 
acquisition of nitrate in rice (30, 31). C-terminus of NRT2 and 
the middle region of NAR2 are required for their interactions 

(32, 33). Specifically, Arg-100 and Asp-109 of OsNAR2.1 are 
important for its interaction with OsNRT2.3a for plasmamem-
brane localization and nitrate transport activity (29, 32). Acti-
vity of NRT2 is also affected by post-translational modification. 
AtNRT2.1 remains phosphorylated at Ser-28 under low nitrate 
conditions. However, it is rapidly dephosphorylated under high 
nitrate conditions (34, 35). Phosphorylation at Ser-28 stabilizes 
AtNRT2.1 under N-limited conditions (36). In contrast, Ser-11 
of AtNRT2.1 is dephosphorylated under N starvation condi-
tions (35). Similarly, phosphorylation of Ser-501 in AtNRT2.1 
can lead to inactivation of its transporting activity under high 
nitrate conditions (37). Phosphorylation of AtNRT2.1 at Ser-501 
can be removed by AtCEPD-induced phosphatase (CEPH) 
under N-starvation conditions (38). AtCEPH mediates CEP 
dependent long-distance peptide signaling, which is important 
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for root-to-shoot N-starvation signaling (39). Interestingly, the 
level of AtNRT2.1 protein is not strongly affected by a short- 
term exposure to high nitrogen conditions (40). These results 
together indicate that post-translational regulations are important 
for rapid regulation of high-affinity nitrate transporters in re-
sponse to high nitrogen conditions (Fig. 1).

FUNCTION OF AMMONIUM TRANSPORTER AND 
THEIR REGULATION FOR N ACQUISITION

The major form of N source for plants is nitrate in dryland soils 
and ammonium in flooded or acidic soils (41). Thus, plants 
require AMTs for ammonium acquisition from soils. AMTs 
consist of 11-12 transmembrane helix regions and a hydro-
phobic pore for ammonium transport (42, 43). Due to a strong 
hydrophobicity of the central pore responsible for ammonium 
transport, how positive charged ammonium can penetrate the 
hydrophobic pore of AMT remains unclearly. In case of bac-
terial AmtB, ammonium is first sequestered at the periplasmic 
face. Ammonium is then deprotonated, yielding hydrogen ion 
and ammonia. Hydrogen ion and ammonia follow two 
separated pathways of AmtB to the cytoplasm. Reprotonation 
then occurs near the cytoplasmic face (43). AMTs widely exist 
in plants. They can be categorized into two subgroups: AMT1 
and AMT2 (44). Arabidopsis has four AtAMT1s and one AtAMT2. 
AtAMT1;1, the first plant AMT, was identified through yeast 
complementation assay using a yeast mutant lacking its two 
ammonium transports (45). Heterologous expression of AtAMT1;1 
in oocyte system has revealed that AtAMT1;1 can act as a 
high-affinity ammonium transporter (46, 47). Roles of AMT in 
ammonium transport are mainly regulated by their tissue spec-
ific expression patterns. Under nitrogen deficiency conditions, 
expression levels of both AtAMT1;1 and AtMAT1;3 are up- 
regulated in outer cell layers of roots and root hairs, suggesting 
that they are responsible for ammonium acquisition from soils 
(48). The absorbed ammonium is then further transported by 
AtAMT1;2 which is expressed on endothelial cells (49, 50). 
Different from AtAMT1s, AtAMT2;1 is not directly related to 
ammonium acquisition from soils. Rather, AtAMT2;1 is related 
to xylem loading of ammonium. In the presence of ammonium, 
AtAMT2;1 is mainly expressed in the pericycle. In addition, 
atamt2;1 mutants show reduced translocation of ammonium 
to shoots and reduced ammonium content in the xylem sap 
(51), suggesting that AtAMT2;1 mainly functions for root-to- 
shoot ammonium translocation. 

Beside transcriptional controls, activity of AMT is further 
regulated by post-translational control. In AtAMT1;1, Thr-460 
is the target for phosphorylation. Substitution of Thr-460 with 
A in AtAMT1;1, a mimic for dephosphorylated AtAMT1:1, can 
result in activation of its ammonium transporter activity. In 
contrast, a phosphorylation mimic version of AtAMT1;1 does 
not show ammonium transport activity (52). Similarly, transport 
activities of other AtAMT1s are controlled by phosphorylation 
(53-55). Similar to NRT, CIPK23 and CBL1 are involved in 

phosphorylation of AMT. Under toxic ammonium conditions, 
CIPK23 together with CBL1 can phosphorylate AtAMT1;1 and 
AtAMT1;2 to inactivate their transporter activities (56). How-
ever, mutation of CIPK23 is insufficient to abolish phosphoryla-
tion of AMTs. This observation points out that other compo-
nents are responsible for phosphorylation of AMTs in plants. 
For example, CIPK15 was identified as a interactor of AtAMT1.1 
(57). Another possible candidate for phosphorylation of AMTs 
has been identified from rice plants (58). OsACTPK1 is a pro-
tein kinase belonging to serine/threonine/tyrosine (STY) protein 
kinase family. Expression level of OsACTPK1 is changed accor-
ding to external ammonium concentration. In addition, OsACTPK1 
shows overlapping root cell specific expression in the epider-
mis and exodermis with OsAMT1;2. In vitro analysis has shown 
that OsACTPK1 can phosphorylate OsAMT1;2 at Thr-453. 
Consistent with in vitro data, phosphorylation of OsAMT1;2 is 
reduced in osactpk1 mutant under sufficient ammonium condi-
tions. AtAMT1;3 has additional positions for phosphorylation, 
as well as conserved Thr residue (53). Additional phosphoryla-
tion of AtAMT1;3 moderately decreases its transporter activity, 
indicating that phosphorylation at the C-terminal conserved 
Thr residue acts as a major switch to prevent excess ammo-
nium accumulation, while additional phosphorylation fine 
tune the activity of AMT to achieve optimal ammonium uptake. 
In contrast with these regulations, phosphorylation of AtAMT1;1 
at Ser-450 residue by CPK32 increases ammonium transporter 
activity of AtAMT1;1 (Fig. 1) (59).

In addition to phosphorylation, AMT activity is regulated by 
endocytosis depending on external N concentration. Under N 
deprived conditions, AtAMT1;3-GFP shows long plasma mem-
brane residence time, indicating that AtAMT1;3 can be accum-
ulated in plasma membrane for ammonium uptake. However, 
AtAMT1;3 forms a speckle under high ammonium conditions. 
It is then internalized into cytoplasm. The internalization of 
AtAMT1;3 clusters occurs mainly by clathrin-mediated endocytic 
pathway (60). The shutdown mechanism of AtAMT1s either by 
phosphorylation or internalization is important for preventing 
over-accumulation of ammonium in plants cells known to 
cause toxicity.

UPTAKE AND ALLOCATION OF AMINO ACIDS 

In addition to inorganic N, organic N (amino acid and pep-
tides) is also a N source absorbed from the soil by plants (61). 
Amino acid transporters (AATs) function in organic N acqui-
sition and long-distance allocation of amino acids, which are 
crucial for supporting plant growth, development, and stress 
responses. AATs can be divided into two families: amino 
acid/auxin permease (AAAP) family and amino acid-polyamine- 
organocation (APC) family (62, 63). AAAP family is further 
divided into amino acid permeases (AAPs), lysine and histidine 
transporters (LHTs), lysine and histidine transporters (LHTs), 
γ-aminobutyric acid transporters (GATs), proline transports 
(ProTs), and indole-3-acetic acid transporters (AUXs). The APC 
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family has cationic amino acid transporters (CATs), amino 
acid/chloine transporters, and polyamine H+-symporters (PHSs). 
In addition, Usually Multiple Amino Acids Move In and Out 
Transporters (UMAMITs), a new class of transporters, has been 
identified from plants (64, 65). The acquisition of organic N 
source from the soil is mediated by root-expressed amino acid 
transporters such as AAP1, AAP5, LHT1, and LHT6 (66-69). In 
addition to their roles in amino acid acquisition from the soil, 
AATs can also mediate root-to-shoot allocation (63). AAP2 and 
AAP6 can mediate xylem-to-phloem amino acid transfer. Phl-
oem loading of amino acids is controlled by multiple AATs 
(AAP2, AAP3, AAP5, AAP8, CAT1, and CAT6) (63, 70-72). 
UMAMITs have been reported to be required for amino acid 
allocation to developing seeds (73). UMAMIT18 present in 
vascular tissue and developing seeds is required for accumula-
tion of amino acids in developing siliques (73). In addition, 
UMAMIT14, UMAMIT 28, and UMAMIT29 are involved in 
allocation of amino acids to the developing embryo (64). 
AAP8 is also required for amino acid accumulation in develop-
ing siliques and seeds (74).

MOLECULAR MECHANISM OF N SIGNALING 
PATHWAY

N signaling pathway regulates both primary local N responses 
and systemic N responses. Nitrate is a nutrient signal regu-
lating global gene expression in plants. Many genes induced 
by nitrate treatment are not only directly related to nitrate 
metabolism, but also involved in other metabolic pathways 
(amino acid, nucleic acid, other nutrients), hormone signaling, 
and development (75, 76). Transcriptome analysis of nitrate 
reductase mutant with impaired nitrate assimilation has shown 
that nitrate is the primary signal for N responses (77, 78). 
Nitrate signal is perceived by NRT1.1 nitrate sensor, leading to 
production of second messengers, which then triggers changes 
in gene expression (79). As mentioned above, calcium is a 
strong candidate for nitrate signal transduction. Nitrate treat-
ment can induce rapid increase of cytoplasmic calcium ion 
through NRT1.1 dependent activation of phospholipase C and 
inositol phosphate (12, 24). The calcium dependent signaling 
pathway can transmit N signaling into N-responsive transcrip-
tion factors through the action of CPKs. CPKs phosphorylates 
Nin-Line Protein (NLPs), major components for primary N 
responses in plants (80, 81), to promote their nuclear locali-
zation (23). NLP7 is required for both nitrogen sensing and 
early nitrate dependent signaling (82). Consistent with this 
idea, majority of CPK-dependent N-responsive genes are over-
lapped with genes controlled by NLP7. However, some N- 
responsive genes are regulated through a calcium-independent 
pathway (23, 24), suggesting that there are additional signaling 
pathway as well as calcium-dependent pathway. For example, 
it has been reported that nuclearcytoplasmic movement of 
NLP7 is controlled by Homolog of Brassinosteroid enhanced 
expression2 Interacting with IBH1 (HBI1) (83). HBIs are re-

quired for activation of antioxidant genes to reduce accum-
ulation of reactive oxygen species (ROS). Disruption of ROS 
homeostasis either by mutation of HBIs or CATALASEs at-
tenuates nuclear localization of NLP7. These results indicate 
that ROS could be another signal that modulates NLP7 de-
pendent N signaling. Contrary to CPKs and HBIs, SnRK1 ac-
celerates cytoplasmic accumulation of NLP7 (84). KIN10, the 
α-catalytic subunit of Snrk1 phosphorylates NLP7 to promote 
its cytoplasmic localization and degradation. The Snrk1-de-
pendent suppression of NLP7 is required for coordination of 
carbon and nitrogen metabolism (Fig. 1).

Transcriptional network governed by N signaling has been 
extensively investigated by functional characterization of 
individual TFs (12, 85, 86). Through the single gene level 
approaches, many TFs important for nitrate responses, such as 
ANR1, TGA1, TGA4, NLP6, NLP7, TCP20, LBD37, LBD38, 
LBD39 and NRG2, have been identified in plants (87-92). 
They are involved in transcription regulation of various nitro-
gen responses such as lateral root growth, N uptake, and N 
assimilation. The first TF identified in N signaling was ANR1, a 
MADS box gene involved in lateral root elongation (92). 
Members of the NLP family, in addition to NLP7, are also 
involved in N signaling. Upregulation of N-inducible gene 
involved in N transport, assimilation, and metabolic pathways 
is completely abolished in a nlp septuple mutant (nlp2 nlp4 
nlp5 nlp6 nlp7 nlp8 nlp9). The redundant function of NLPs 
can be explained by their protein-protein interactions (93). 
NLP protein form a homo-hetero complex through their PB1 
domain. The interaction is required for full activation of target 
genes (93). In addition, it has been reported that NLP7 forms a 
complex with Nitrate Regulatory Gene 2 (NRG2) and TCP20 
(89, 90). NRG2 was identified from forward genetic screening 
for reduced N responses (90). NRG2 interacts with NLP7 in 
the nucleus and controls N-mediated expression of N tran-
sporters, including NRT1.1 (90). TCP20 and NLP6/7 form 
heterodimers and bind to adjacent sites in the promoter region 
of nitrate reductase gene, NIA1 (89). Interestingly, it has been 
predicted that NLP2 can regulate N signaling pathway different 
from NLP7 (88). Further investigation is required to determine 
whether NLP2 consists new regulatory loop(s) independent of 
NLP7. TGA1 and TGA4 have also been identified as key re-
gulatory components in N-mediated root development (87). 
Most of downstream genes controlled by TGA1 and TGA4 are 
involved in N responses. Especially, TGA1 and TGA4 regulate 
nitrate-dependent lateral root development via NRT2.1 and 
NRT2.2 (87). In addition to those positive regulators, negative 
regulators have also been identified in N signaling. LBD37-39 
are characterized as negative regulators involved in modula-
tion of nitrate-inducible gene expression in a time- and con-
centration- dependent manner (91). Interact With Spt6 (IWS1) 
can represses the expression of NRT2.1 through histone me-
thylation under high N conditions (94). Similarly, Nitrate-Indu-
cible GARP-type Transcriptional repressor1 (NIGT1) act as a 
negative regulator in N signaling. NIGT1 expression is posi-



Nitrogen signaling in plants
Su Jeong Choi, et al.

60 BMB Reports http://bmbreports.org

tively regulated by nitrate through NLPs. NIGT1 also binds to 
its own promoter, forming a negative feedback regulation 
loop. Nitrate-induced NIGT can directly represses expression 
of NRT2.1 (95). Through this mechanism, NIGT1 and NLPs 
modulate the expression of NRT2.1 under given N conditions. 

Based on these information and advances in systemic ap-
proaches, several attempts have been made to construct N 
signaling network using machine-learning technology, cell-based 
TF perturbation analysis, and Y1H analysis (85, 86, 96-98). To 
identify TFs and their targets in N-mediated root responses, 
Gaudinier et al. (2018) have performed yeast one-hybrid analy-
sis with 98 promoters and 345 transcription factors involved in 
N metabolism and responses and constructed a nitrogen- 
associated metabolism network. The network has confirmed 
that combinational interactions between multiple TFs are im-
portant for regulation of N metabolism and signaling. In 
addition, several transcription factors (RAV2, ERF107, ARF18, 
BBX16) involved in hormonal responses are predicted to link 
N signaling and hormonal regulation of plant growth (86). The 
advance of TARGET (Transient Assay Reporting Genome-wide 
Effects of Transcription factors) system has greatly improved 
our understanding of transcriptional regulatory network. TARGET 
is a plant cell based temporal TF perturbation system based on 
protoplast transient expression of glucocorticoid receptor (GR)- 
tagged TF and time course chromatin-immunoprecipitation 
(ChIP) (99). TARGET technology has been used to identify 
genome-wide targets of N-responsive TFs (85, 100, 101). 
Medici et al. (2015) have successfully identified direct targets 
of NIGT1 using TARGET. In addition, together with 4-thioura-
cile labeling of de novo transcripts, Para et al. (2014) have 
found that bZIP1 regulates early N responsive genes through 
heat and run transcription. This suggests that TFs can regulate 
expression of their targets through both transient and stable 
associations with their promoters. To monitor transient bind-
ings of TFs on their targets, DNA adenine methyltransferase 
(Dam) can be fused with TF. TF fused with Dam can mark its 
binding promoter region with adenine methylation (Dam-ID), 
even if the binding is transient. By coupling ChIP and Dam-ID, 
Alvarez et al. (2020) have identified both stable and transient 
targets of NLP7. 

Time-based machine learning method has also been applied 
to construct dynamic regulatory networks underlying N signal-
ing using time course transcriptome profiling (96). Precision of 
the network has been further confirmed using genome-wide 
TF-target regulation data of TGA1, HHO, HHO6, and PHL1. 
These networks have isolated 146 novel candidate TFs and 
their targets involved in N responses (96). Similarly, machine 
learning method has been used to construct network waking 
chart for transcriptional dynamics of N signaling in roots (97). 
Network walking has revealed that TGA1 is responsible for 
direct regulation of about 40% of N-responsive genes in roots. 
Moreover, 49 intermediate TFs connecting TGA1 to its indirect 
targets have been found (97).

CONCLUSION

This review summarizes our current understanding on how 
plants sense surrounding N status and transmit the information 
to induce physiological responses. We highlight the import-
ance of post-translational regulation of N transporters for rapid 
and accurate responses toward changing N conditions, which 
is important for effective acquisition of N source from soils. 
N-related transporters have functions not only in N acquisition 
and signaling, but also in diverse biological processes, inclu-
ding auxin signaling, flowering time regulation, stomatal move-
ments, and plant-pathogen interaction. Further investigation on 
N transporters and their signaling functions in other processes 
will expand our understanding of how N participates in the 
modulation of responses of plants in natural conditions. We 
also illustrated N signaling mechanism through transcriptional 
network governed by key N-responsive TFs. As discussed in 
this review, many efforts have been made to characterize 
molecular regulation of N responses in plants. Together with 
classical genetic and biochemical approaches, integrative sys-
temic approaches provide new possible regulatory networks 
involved resided in N responses. Especially, TARGET-based 
transcriptome analysis with multiple key signaling components 
will be useful for investigating dynamic N-mediated transcrip-
tional regulation. In addition, development of data integration 
tools and modeling system is required to use existed high 
throughput data for precise prediction of N signaling. In ad-
dition, detailed characterization of N-responsive TFs is also 
required to connect missing link between known key TFs and 
to ensure their functions are conserved in other plants, es-
pecially in crop plants. In addition to local dynamic regulation 
pathways for N-responses, plants possess systemic nitrate sig-
naling pathways to transmit local N stimuli to distal tissues. 
Compared with local nitrate signaling, systemic nitrate signal-
ing has been poorly understood due to difficulty of uncoupling 
local responses from systemic responses. Development of an 
experimental design that can uncouple systemic responses 
from local responses will greatly improve our understanding of 
systemic nitrate signaling. A comparative study between nodu-
lating plants and non-nodulating plants is another strategy to 
elucidate molecular components resided in systemic N signal-
ing.
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