참고문헌
- Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, et al. : Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5 : 4006, 2014
- Bakkar N, Kovalik T, Lorenzini I, Spangler S, Lacoste A, Sponaugle K, et al. : Artificial intelligence in neurodegenerative disease research: use of IBM Watson to identify additional RNA-binding proteins altered in amyotrophic lateral sclerosis. Acta Neuropathol 135 : 227-247, 2018 https://doi.org/10.1007/s00401-017-1785-8
- Ball T, Gonzalez-Martinez J, Zemmar A, Sweid A, Chandra S, VanSickle D, et al. : Robotic applications in cranial neurosurgery: current and future. Oper Neurosurg (Hagerstown) 21 : 371-379, 2021 https://doi.org/10.1093/ons/opab217
- Bickle J : Precis of philosophy and neuroscience: a ruthlessly reductive account. Phenom Cogn Sci 4 : 231-238, 2005 https://doi.org/10.1007/s11097-005-4066-2
- Brain Trauma Foundation; American Association of Neurological Surgeons; Congress of Neurological Surgeons; Joint Section on Neurotrauma and Critical Care, AANS/CNS, Bratton SL, et al. Guidelines for the management of severe traumatic brain injury. II. Hyperosmolar therapy. J Neurotrauma 24 : Suppl 1:S14-S20, 2007 https://doi.org/10.1089/neu.2007.9994
- Buchlak QD, Esmaili N, Leveque JC, Bennett C, Farrokhi F, Piccardi M : Machine learning applications to neuroimaging for glioma detection and classification: an artificial intelligence augmented systematic review. J Clin Neurosci 89 : 177-198, 2021 https://doi.org/10.1016/j.jocn.2021.04.043
- Burstrom G, Buerger C, Hoppenbrouwers J, Nachabe R, Lorenz C, Babic D, et al. : Machine learning for automated 3-dimensional segmentation of the spine and suggested placement of pedicle screws based on intraoperative cone-beam computer tomography. J Neurosurg Spine 31 : 147-154, 2019 https://doi.org/10.3171/2018.12.SPINE181397
- Chumnanvej S, Pillai BM, Chalongwongse S, Suthakorn J : Endonasal endoscopic transsphenoidal approach robot prototype: a cadaveric trial. Asian J Surg 44 : 345-351, 2021 https://doi.org/10.1016/j.asjsur.2020.08.011
- Chwialkowski MP, Shile PE, Pfeifer D, Parkey RW, Peshock RM : Automated localization and identification of lower spinal anatomy in magnetic resonance images. Comput Biomed Res 24 : 99-117, 1991 https://doi.org/10.1016/0010-4809(91)90023-P
- Claassen J, Doyle K, Matory A, Couch C, Burger KM, Velazquez A, et al. : Detection of brain activation in unresponsive patients with acute brain injury. N Engl J Med 380 : 2497-2505, 2019 https://doi.org/10.1056/NEJMoa1812757
- Goyal A, Ngufor C, Kerezoudis P, McCutcheon B, Storlie C, Bydon M : Can machine learning algorithms accurately predict discharge to nonhome facility and early unplanned readmissions following spinal fusion? Analysis of a national surgical registry. J Neurosurg Spine 31 : 568-578, 2019 https://doi.org/10.3171/2019.3.SPINE181367
- Graziano Michael SA : Consciousness and the social brain. New York : Oxford University Press, 2013
- Haladjian HH, Montemayor C : Artificial consciousness and the consciousness-attention dissociation. Conscious Cogn 45 : 210-225, 2016 https://doi.org/10.1016/j.concog.2016.08.011
- Hale AT, Stonko DP, Wang L, Strother MK, Chambless LB : Machine learning analyses can differentiate meningioma grade by features on magnetic resonance imaging. Neurosurg Focus 45 : E4, 2018
- Hernandes Rocha TA, Elahi C, Cristina da Silva N, Sakita FM, Fuller A, Mmbaga BT, et al. : A traumatic brain injury prognostic model to support in-hospital triage in a low-income country: a machine learning-based approach. J Neurosurg 132 : 1961-1969, 2019
- Hinton GE, Osindero S, Teh YW : A fast learning algorithm for deep belief nets. Neural Comput 18 : 1527-1554, 2006 https://doi.org/10.1162/neco.2006.18.7.1527
- Hopkins BS, Yamaguchi JT, Garcia R, Kesavabhotla K, Weiss H, Hsu WK, et al. : Using machine learning to predict 30-day readmissions after posterior lumbar fusion: an NSQIP study involving 23,264 patients. J Neurosurg Spine 32 : 399-406, 2020 https://doi.org/10.3171/2019.9.SPINE19860
- Huang KT, Silva MA, See AP, Wu KC, Gallerani T, Zaidi HA, et al. : A computer vision approach to identifying the manufacturer and model of anterior cervical spinal hardware. J Neurosurg Spine 31 : 844-850, 2019 https://doi.org/10.3171/2019.6.SPINE19463
- Kalagara S, Eltorai AEM, Durand WM, DePasse JM, Daniels AH : Machine learning modeling for predicting hospital readmission following lumbar laminectomy. J Neurosurg Spine 30 : 344-352, 2018 https://doi.org/10.3171/2018.8.SPINE1869
- Korez R, Putzier M, Vrtovec T : A deep learning tool for fully automated measurements of sagittal spinopelvic balance from X-ray images: performance evaluation. Eur Spine J 29 : 2295-2305, 2020 https://doi.org/10.1007/s00586-020-06406-7
- Lee MH, Kim J, Kim ST, Shin HM, You HJ, Choi JW, et al. : Prediction of IDH1 mutation status in glioblastoma using machine learning technique based on quantitative radiomic data. World Neurosurg 125 : e688-e696, 2019 https://doi.org/10.1016/j.wneu.2019.01.157
- Marcus HJ, Hughes-Hallett A, Kwasnicki RM, Darzi A, Yang GZ, Nandi D : Technological innovation in neurosurgery: a quantitative study. J Neurosurg 123 : 174-181, 2015 https://doi.org/10.3171/2014.12.JNS141422
- McDonald RJ, Schwartz KM, Eckel LJ, Diehn FE, Hunt CH, Bartholmai BJ, et al. : The effects of changes in utilization and technological advancements of cross-sectional imaging on radiologist workload. Acad Radiol 22 : 1191-1198, 2015 https://doi.org/10.1016/j.acra.2015.05.007
- Minsky M, Papert S : Perceptrons: an introduction to computational geometry. Cambridge : MIT Press, 1969
- Mohamed AR, Sainath TN, Dahl G, Ramabhadran B, Hinton GE, Picheny MA : Deep Belief Networks using discriminative features for phone recognition. 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); 2012 Nov 1; Prague Computer Science. IEEE Signal Processing Magazine, 5060-5063, 2011
- Muhlestein WE, Akagi DS, Davies JM, Chambless LB : Predicting inpatient length of stay after brain tumor surgery: developing machine learning ensembles to improve predictive performance. Neurosurgery 85 : 384-393, 2019 https://doi.org/10.1093/neuros/nyy343
- Paliwal N, Jaiswal P, Tutino VM, Shallwani H, Davies JM, Siddiqui AH, et al. : Outcome prediction of intracranial aneurysm treatment by flow diverters using machine learning. Neurosurg Focus 45 : E7, 2018
- Philipp LR, Matias CM, Thalheimer S, Mehta SH, Sharan A, Wu C : Robot-assisted stereotaxy reduces target error: a meta-analysis and metaregression of 6056 trajectories. Neurosurgery 88 : 222-233, 2021 https://doi.org/10.1093/neuros/nyaa428
- Raj R, Luostarinen T, Pursiainen E, Posti JP, Takala RSK, Bendel S, et al : Machine learning-based dynamic mortality prediction after traumatic brain injury. Sci Rep 9 : 17672, 2019
- Ratner M : FDA backs clinician-free AI imaging diagnostic tools. Nat Biotechnol 36 : 673-674, 2018 https://doi.org/10.1038/nbt0818-673a
- Rosenblatt F : The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65 : 386-408, 1958 https://doi.org/10.1037/h0042519
- Scherer M, Cordes J, Younsi A, Sahin YA, Gotz M, Mohlenbruch M, et al. : Development and validation of an automatic segmentation algorithm for quantification of intracerebral hemorrhage. Stroke 47 : 2776-2782, 2016 https://doi.org/10.1161/STROKEAHA.116.013779
- Searle J : Chinese room argument. Scholarpedia 4 : 3100, 2009
- Senders JT, Staples P, Mehrtash A, Cote DJ, Taphoorn MJB, Reardon DA, et al. : An online calculator for the prediction of survival in glioblastoma patients using classical statistics and machine learning. Neurosurgery 86 : E184-E192, 2020 https://doi.org/10.1093/neuros/nyz403
- Siccoli A, de Wispelaere MP, Schroder ML, Staartjes VE : Machine learning-based preoperative predictive analytics for lumbar spinal stenosis. Neurosurg Focus 46 : E5, 2019
- Staartjes VE, Serra C, Muscas G, Maldaner N, Akeret K, van Niftrik CHB, et al. : Utility of deep neural networks in predicting gross-total resection after transsphenoidal surgery for pituitary adenoma: a pilot study. Neurosurg Focus 45 : E12, 2018
- Staartjes VE, Zattra CM, Akeret K, Maldaner N, Muscas G, Bas van Niftrik CH, et al. : Neural network-based identification of patients at high risk for intraoperative cerebrospinal fluid leaks in endoscopic pituitary surgery. J Neurosurg 133 : 329-335, 2020 https://doi.org/10.3171/2019.4.JNS19477
- Starr PA, Martin AJ, Ostrem JL, Talke P, Levesque N, Larson PS : Subthalamic nucleus deep brain stimulator placement using high-field interventional magnetic resonance imaging and a skull-mounted aiming device: technique and application accuracy. J Neurosurg 112 : 479-490, 2010 https://doi.org/10.3171/2009.6.JNS081161
- Tanioka S, Ishida F, Nakano F, Kawakita F, Kanamaru H, Nakatsuka Y, et al. : Machine learning analysis of matricellular proteins and clinical variables for early prediction of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Mol Neurobiol 56 : 7128-7135, 2019 https://doi.org/10.1007/s12035-019-1601-7
- Tunthanathip T, Sae-Heng S, Oearsakul T, Sakarunchai I, Kaewborisutsakul A, Taweesomboonyat C : Machine learning applications for the prediction of surgical site infection in neurological operations. Neurosurg Focus 47 : E7, 2019
- Turing AM : Computing machinery and intelligence. Mind 59 : 433-460, 1950 https://doi.org/10.1093/mind/LIX.236.433
- Urbizu A, Martin BA, Moncho D, Rovira A, Poca MA, Sahuquillo J, et al. : Machine learning applied to neuroimaging for diagnosis of adult classic Chiari malformation: role of the basion as a key morphometric indicator. J Neurosurg 129 : 779-791, 2018 https://doi.org/10.3171/2017.3.JNS162479
- Voter AF, Meram E, Garrett JW, Yu JJ : Diagnostic accuracy and failure mode analysis of a deep learning algorithm for the detection of intracranial hemorrhage. J Am Coll Radiol 18 : 1143-1152, 2021 https://doi.org/10.1016/j.jacr.2021.03.005
- Wagner K, Vaz-Guimaraes F, Camstra K, Lam S : Endoscope-assisted hemispherotomy: translation of technique from cadaveric anatomical feasibility study to clinical implementation. J Neurosurg Pediatr 23 : 178-186, 2018 https://doi.org/10.3171/2018.8.PEDS18349
- Wang L, Alexander CA : Big data in medical applications and health care. Current Research in Medicine 6 : 1-8, 2015 https://doi.org/10.3844/amjsp.2015.1.8
- Welter ML, Schupbach M, Czernecki V, Karachi C, Fernandez-Vidal S, Golmard JL, et al. : Optimal target localization for subthalamic stimulation in patients with Parkinson disease. Neurology 82 : 1352-1361, 2014 https://doi.org/10.1212/WNL.0000000000000315
- Zlojutro A, Rey D, Gardner L : A decision-support framework to optimize border control for global outbreak mitigation. Sci Rep 9 : 2216, 2019