DOI QR코드

DOI QR Code

Artificial Intelligence for Neurosurgery : Current State and Future Directions

  • Sung Hyun Noh (Department of Neurosurgery, Ajou University College of Medicine) ;
  • Pyung Goo Cho (Department of Neurosurgery, Ajou University College of Medicine) ;
  • Keung Nyun Kim (Department of Neurosurgery, Yonsei University College of Medicine) ;
  • Sang Hyun Kim (Department of Neurosurgery, Ajou University College of Medicine) ;
  • Dong Ah Shin (Department of Neurosurgery, Yonsei University College of Medicine)
  • 투고 : 2022.06.08
  • 심사 : 2022.09.12
  • 발행 : 2023.03.01

초록

Artificial intelligence (AI) is a field of computer science that equips machines with human-like intelligence and enables them to learn, reason, and solve problems when presented with data in various formats. Neurosurgery is often at the forefront of innovative and disruptive technologies, which have similarly altered the course of acute and chronic diseases. In diagnostic imaging, such as X-rays, computed tomography, and magnetic resonance imaging, AI is used to analyze images. The use of robots in the field of neurosurgery is also increasing. In neurointensive care units, AI is used to analyze data and provide care to critically ill patients. Moreover, AI can be used to predict a patient's prognosis. Several AI applications have already been introduced in the field of neurosurgery, and many more are expected in the near future. Ultimately, it is our responsibility to keep pace with this evolution to provide meaningful outcomes and personalize each patient's care. Rather than blindly relying on AI in the future, neurosurgeons should gain a thorough understanding of it and use it to enhance their patient care.

키워드

참고문헌

  1. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, et al. : Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5 : 4006, 2014 
  2. Bakkar N, Kovalik T, Lorenzini I, Spangler S, Lacoste A, Sponaugle K, et al. : Artificial intelligence in neurodegenerative disease research: use of IBM Watson to identify additional RNA-binding proteins altered in amyotrophic lateral sclerosis. Acta Neuropathol 135 : 227-247, 2018  https://doi.org/10.1007/s00401-017-1785-8
  3. Ball T, Gonzalez-Martinez J, Zemmar A, Sweid A, Chandra S, VanSickle D, et al. : Robotic applications in cranial neurosurgery: current and future. Oper Neurosurg (Hagerstown) 21 : 371-379, 2021  https://doi.org/10.1093/ons/opab217
  4. Bickle J : Precis of philosophy and neuroscience: a ruthlessly reductive account. Phenom Cogn Sci 4 : 231-238, 2005  https://doi.org/10.1007/s11097-005-4066-2
  5. Brain Trauma Foundation; American Association of Neurological Surgeons; Congress of Neurological Surgeons; Joint Section on Neurotrauma and Critical Care, AANS/CNS, Bratton SL, et al. Guidelines for the management of severe traumatic brain injury. II. Hyperosmolar therapy. J Neurotrauma 24 : Suppl 1:S14-S20, 2007  https://doi.org/10.1089/neu.2007.9994
  6. Buchlak QD, Esmaili N, Leveque JC, Bennett C, Farrokhi F, Piccardi M : Machine learning applications to neuroimaging for glioma detection and classification: an artificial intelligence augmented systematic review. J Clin Neurosci 89 : 177-198, 2021  https://doi.org/10.1016/j.jocn.2021.04.043
  7. Burstrom G, Buerger C, Hoppenbrouwers J, Nachabe R, Lorenz C, Babic D, et al. : Machine learning for automated 3-dimensional segmentation of the spine and suggested placement of pedicle screws based on intraoperative cone-beam computer tomography. J Neurosurg Spine 31 : 147-154, 2019  https://doi.org/10.3171/2018.12.SPINE181397
  8. Chumnanvej S, Pillai BM, Chalongwongse S, Suthakorn J : Endonasal endoscopic transsphenoidal approach robot prototype: a cadaveric trial. Asian J Surg 44 : 345-351, 2021  https://doi.org/10.1016/j.asjsur.2020.08.011
  9. Chwialkowski MP, Shile PE, Pfeifer D, Parkey RW, Peshock RM : Automated localization and identification of lower spinal anatomy in magnetic resonance images. Comput Biomed Res 24 : 99-117, 1991  https://doi.org/10.1016/0010-4809(91)90023-P
  10. Claassen J, Doyle K, Matory A, Couch C, Burger KM, Velazquez A, et al. : Detection of brain activation in unresponsive patients with acute brain injury. N Engl J Med 380 : 2497-2505, 2019  https://doi.org/10.1056/NEJMoa1812757
  11. Goyal A, Ngufor C, Kerezoudis P, McCutcheon B, Storlie C, Bydon M : Can machine learning algorithms accurately predict discharge to nonhome facility and early unplanned readmissions following spinal fusion? Analysis of a national surgical registry. J Neurosurg Spine 31 : 568-578, 2019  https://doi.org/10.3171/2019.3.SPINE181367
  12. Graziano Michael SA : Consciousness and the social brain. New York : Oxford University Press, 2013 
  13. Haladjian HH, Montemayor C : Artificial consciousness and the consciousness-attention dissociation. Conscious Cogn 45 : 210-225, 2016  https://doi.org/10.1016/j.concog.2016.08.011
  14. Hale AT, Stonko DP, Wang L, Strother MK, Chambless LB : Machine learning analyses can differentiate meningioma grade by features on magnetic resonance imaging. Neurosurg Focus 45 : E4, 2018 
  15. Hernandes Rocha TA, Elahi C, Cristina da Silva N, Sakita FM, Fuller A, Mmbaga BT, et al. : A traumatic brain injury prognostic model to support in-hospital triage in a low-income country: a machine learning-based approach. J Neurosurg 132 : 1961-1969, 2019 
  16. Hinton GE, Osindero S, Teh YW : A fast learning algorithm for deep belief nets. Neural Comput 18 : 1527-1554, 2006  https://doi.org/10.1162/neco.2006.18.7.1527
  17. Hopkins BS, Yamaguchi JT, Garcia R, Kesavabhotla K, Weiss H, Hsu WK, et al. : Using machine learning to predict 30-day readmissions after posterior lumbar fusion: an NSQIP study involving 23,264 patients. J Neurosurg Spine 32 : 399-406, 2020  https://doi.org/10.3171/2019.9.SPINE19860
  18. Huang KT, Silva MA, See AP, Wu KC, Gallerani T, Zaidi HA, et al. : A computer vision approach to identifying the manufacturer and model of anterior cervical spinal hardware. J Neurosurg Spine 31 : 844-850, 2019  https://doi.org/10.3171/2019.6.SPINE19463
  19. Kalagara S, Eltorai AEM, Durand WM, DePasse JM, Daniels AH : Machine learning modeling for predicting hospital readmission following lumbar laminectomy. J Neurosurg Spine 30 : 344-352, 2018  https://doi.org/10.3171/2018.8.SPINE1869
  20. Korez R, Putzier M, Vrtovec T : A deep learning tool for fully automated measurements of sagittal spinopelvic balance from X-ray images: performance evaluation. Eur Spine J 29 : 2295-2305, 2020  https://doi.org/10.1007/s00586-020-06406-7
  21. Lee MH, Kim J, Kim ST, Shin HM, You HJ, Choi JW, et al. : Prediction of IDH1 mutation status in glioblastoma using machine learning technique based on quantitative radiomic data. World Neurosurg 125 : e688-e696, 2019  https://doi.org/10.1016/j.wneu.2019.01.157
  22. Marcus HJ, Hughes-Hallett A, Kwasnicki RM, Darzi A, Yang GZ, Nandi D : Technological innovation in neurosurgery: a quantitative study. J Neurosurg 123 : 174-181, 2015  https://doi.org/10.3171/2014.12.JNS141422
  23. McDonald RJ, Schwartz KM, Eckel LJ, Diehn FE, Hunt CH, Bartholmai BJ, et al. : The effects of changes in utilization and technological advancements of cross-sectional imaging on radiologist workload. Acad Radiol 22 : 1191-1198, 2015  https://doi.org/10.1016/j.acra.2015.05.007
  24. Minsky M, Papert S : Perceptrons: an introduction to computational geometry. Cambridge : MIT Press, 1969 
  25. Mohamed AR, Sainath TN, Dahl G, Ramabhadran B, Hinton GE, Picheny MA : Deep Belief Networks using discriminative features for phone recognition. 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); 2012 Nov 1; Prague Computer Science. IEEE Signal Processing Magazine, 5060-5063, 2011 
  26. Muhlestein WE, Akagi DS, Davies JM, Chambless LB : Predicting inpatient length of stay after brain tumor surgery: developing machine learning ensembles to improve predictive performance. Neurosurgery 85 : 384-393, 2019  https://doi.org/10.1093/neuros/nyy343
  27. Paliwal N, Jaiswal P, Tutino VM, Shallwani H, Davies JM, Siddiqui AH, et al. : Outcome prediction of intracranial aneurysm treatment by flow diverters using machine learning. Neurosurg Focus 45 : E7, 2018 
  28. Philipp LR, Matias CM, Thalheimer S, Mehta SH, Sharan A, Wu C : Robot-assisted stereotaxy reduces target error: a meta-analysis and metaregression of 6056 trajectories. Neurosurgery 88 : 222-233, 2021  https://doi.org/10.1093/neuros/nyaa428
  29. Raj R, Luostarinen T, Pursiainen E, Posti JP, Takala RSK, Bendel S, et al : Machine learning-based dynamic mortality prediction after traumatic brain injury. Sci Rep 9 : 17672, 2019 
  30. Ratner M : FDA backs clinician-free AI imaging diagnostic tools. Nat Biotechnol 36 : 673-674, 2018  https://doi.org/10.1038/nbt0818-673a
  31. Rosenblatt F : The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65 : 386-408, 1958  https://doi.org/10.1037/h0042519
  32. Scherer M, Cordes J, Younsi A, Sahin YA, Gotz M, Mohlenbruch M, et al. : Development and validation of an automatic segmentation algorithm for quantification of intracerebral hemorrhage. Stroke 47 : 2776-2782, 2016  https://doi.org/10.1161/STROKEAHA.116.013779
  33. Searle J : Chinese room argument. Scholarpedia 4 : 3100, 2009 
  34. Senders JT, Staples P, Mehrtash A, Cote DJ, Taphoorn MJB, Reardon DA, et al. : An online calculator for the prediction of survival in glioblastoma patients using classical statistics and machine learning. Neurosurgery 86 : E184-E192, 2020  https://doi.org/10.1093/neuros/nyz403
  35. Siccoli A, de Wispelaere MP, Schroder ML, Staartjes VE : Machine learning-based preoperative predictive analytics for lumbar spinal stenosis. Neurosurg Focus 46 : E5, 2019 
  36. Staartjes VE, Serra C, Muscas G, Maldaner N, Akeret K, van Niftrik CHB, et al. : Utility of deep neural networks in predicting gross-total resection after transsphenoidal surgery for pituitary adenoma: a pilot study. Neurosurg Focus 45 : E12, 2018 
  37. Staartjes VE, Zattra CM, Akeret K, Maldaner N, Muscas G, Bas van Niftrik CH, et al. : Neural network-based identification of patients at high risk for intraoperative cerebrospinal fluid leaks in endoscopic pituitary surgery. J Neurosurg 133 : 329-335, 2020  https://doi.org/10.3171/2019.4.JNS19477
  38. Starr PA, Martin AJ, Ostrem JL, Talke P, Levesque N, Larson PS : Subthalamic nucleus deep brain stimulator placement using high-field interventional magnetic resonance imaging and a skull-mounted aiming device: technique and application accuracy. J Neurosurg 112 : 479-490, 2010  https://doi.org/10.3171/2009.6.JNS081161
  39. Tanioka S, Ishida F, Nakano F, Kawakita F, Kanamaru H, Nakatsuka Y, et al. : Machine learning analysis of matricellular proteins and clinical variables for early prediction of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Mol Neurobiol 56 : 7128-7135, 2019  https://doi.org/10.1007/s12035-019-1601-7
  40. Tunthanathip T, Sae-Heng S, Oearsakul T, Sakarunchai I, Kaewborisutsakul A, Taweesomboonyat C : Machine learning applications for the prediction of surgical site infection in neurological operations. Neurosurg Focus 47 : E7, 2019 
  41. Turing AM : Computing machinery and intelligence. Mind 59 : 433-460, 1950  https://doi.org/10.1093/mind/LIX.236.433
  42. Urbizu A, Martin BA, Moncho D, Rovira A, Poca MA, Sahuquillo J, et al. : Machine learning applied to neuroimaging for diagnosis of adult classic Chiari malformation: role of the basion as a key morphometric indicator. J Neurosurg 129 : 779-791, 2018  https://doi.org/10.3171/2017.3.JNS162479
  43. Voter AF, Meram E, Garrett JW, Yu JJ : Diagnostic accuracy and failure mode analysis of a deep learning algorithm for the detection of intracranial hemorrhage. J Am Coll Radiol 18 : 1143-1152, 2021  https://doi.org/10.1016/j.jacr.2021.03.005
  44. Wagner K, Vaz-Guimaraes F, Camstra K, Lam S : Endoscope-assisted hemispherotomy: translation of technique from cadaveric anatomical feasibility study to clinical implementation. J Neurosurg Pediatr 23 : 178-186, 2018  https://doi.org/10.3171/2018.8.PEDS18349
  45. Wang L, Alexander CA : Big data in medical applications and health care. Current Research in Medicine 6 : 1-8, 2015  https://doi.org/10.3844/amjsp.2015.1.8
  46. Welter ML, Schupbach M, Czernecki V, Karachi C, Fernandez-Vidal S, Golmard JL, et al. : Optimal target localization for subthalamic stimulation in patients with Parkinson disease. Neurology 82 : 1352-1361, 2014  https://doi.org/10.1212/WNL.0000000000000315
  47. Zlojutro A, Rey D, Gardner L : A decision-support framework to optimize border control for global outbreak mitigation. Sci Rep 9 : 2216, 2019