DOI QR코드

DOI QR Code

Electroanalytical Determination of Copper(II) Ions Using a Polymer Membrane Sensor

  • Oguz Ozbek (Zonguldak Bülent Ecevit University, Science and Technology, Application and Research Center) ;
  • Meliha Burcu Gurdere (Tokat Gaziosmanpasa University, Faculty of Science and Arts, Department of Chemistry) ;
  • Caglar Berkel (Tokat Gaziosmanpasa University, Faculty of Science and Arts, Department of Molecular Biology and Genetics) ;
  • Omer Isildak (Tokat Gaziosmanpasa University, Faculty of Science and Arts, Department of Chemistry)
  • Received : 2022.08.16
  • Accepted : 2022.09.29
  • Published : 2023.02.28

Abstract

In this study, a new potentiometric sensor selective to copper(II) ions was developed and characterized. The developed sensor has a polymeric membrane and contains 4.0% electroactive material (ionophore), 33.0% poly(vinyl chloride) (PVC), 63.0% bis(2-ethylhexyl)sebacate (BEHS) and 1.0% potassium tetrakis(p-chlorophenyl)borate (KTpClPB). This novel copper(II)-selective sensor exhibits a Nernstian response over a wide concentration range from 1.0×10-6 to 1.0×10-1 mol L-1 with a slope of 29.6 (±1.2) mV decade-1, and a lower detection limit of 8.75×10-7 mol L-1. The sensor, which was produced economically by synthesizing the ionophore in the laboratory, has a good selectivity and repeatability, fast response time and stable potentiometric behaviour. The potential response of the sensor remains unaffected of pH in the range of 5.0-10.0. Based on the analytical applications of the sensor, we showed that it can be used as an indicator electrode in the quantification of Cu2+ ions by potentiometric titration against EDTA, and can also be successfully utilized for the determination of copper(II) ions in different real samples.

Keywords

References

  1. A. Anandkumar, R. Nagarajan, E. S. Gounder, and K. Prabakaran, Chemosphere, 2022, 287, 132069.
  2. B. B. Petkovic, S. P. Sovilj, M. V. Budimir, R. M. Simonovic, and V. M. Jovanovic, Electroanalysis, 2010, 22(16), 1894-1900. https://doi.org/10.1002/elan.201000053
  3. M. D. Tutulea-Anastasiu, D. Wilson, M. del Valle, C. M. Schreiner, and I. Cretescu, Sensors, 2013, 13(4), 4367-4377. https://doi.org/10.3390/s130404367
  4. R. Manne, M. M. R. M. Kumaradoss, R. S. R. Iska, A. Devarajan, and Nageswararao Mekala, Appl. Water Sci., 2022, 12, 27.
  5. G. Ozzeybek, S. Erarpat, D. S. Chormey, M. Firat, C. Buyukpinar, F. Turak, and S. Bakirdere, Microchem. J., 2017, 132, 406-410. https://doi.org/10.1016/j.microc.2017.02.031
  6. V. Kaur and A. K. Malik, Anal. Chim., 2007, 97(11-12), 1279-1290. https://doi.org/10.1002/adic.200790113
  7. R. M. Alghanmi, E-J. Chem., 2012, 9(2), 1007-1016. https://doi.org/10.1155/2012/279628
  8. K. Hevia, V. Arancibia, and C. Rojas-Romo, Microchem. J., 2015, 119, 11-16. https://doi.org/10.1016/j.microc.2014.10.004
  9. H. Arslan and E. Hasdemir, G.U. J. Sci., 2004, 17(1), 49-58.
  10. O. Ozbek, C. Berkel, O. Isildak, and I. Isildak, Clin. Chim. Acta, 2022, 524, 154-163. https://doi.org/10.1016/j.cca.2021.11.011
  11. O. Ozbek and C. Berkel, Sensors Int., 2022, 3, 100189.
  12. O. Ozbek, C. Berkel and O. Isildak, Crit. Rev. Anal. Chem., 2022, 52, 768-779. https://doi.org/10.1080/10408347.2020.1825065
  13. E. Bakker and E. Pretsch, Trends Analyt. Chem., 2005, 24(3), 199-207. https://doi.org/10.1016/j.trac.2005.01.003
  14. O. Isildak and O. Ozbek, Crit. Rev. Anal. Chem., 2021, 51, 218-231. https://doi.org/10.1080/10408347.2019.1711013
  15. O. Ozbek, O. Isildak and C. Berkel, J. Incl. Phenom. Macrocycl. Chem., 2020, 98, 1-9. https://doi.org/10.1007/s10847-020-01004-y
  16. O. Ozbek and O. Isildak, ChemistrySelect, 2022, 7(3), e202103988.
  17. O. Ozbek and O. Isildak, Bull. Mater. Sci., 2022, 45, 114.
  18. D. Vlascici, I. Popa, V. A. Chiriac, G. Fagadar-Cosma, H. Popovici, and E. Fagadar-Cosma, Chem. Cent. J. 2013, 7, 111.
  19. R. Ansari, Z. Mosayebzadeh, M. Arvand, and A. Mohammad-khah, J. Nanostruct. Chem., 2013, 33.
  20. C. Topcu, G. Lacin, V. Yilmaz, F. Coldur, B. Caglar, O. Cubuk, and I. Isildak, Anal. Lett., 2018, 51(12), 1890-1910. https://doi.org/10.1080/00032719.2017.1395035
  21. A. Abbaspour and S. M. M. Moosavi, Talanta, 2002, 56(1), 91-96. https://doi.org/10.1016/S0039-9140(01)00549-5
  22. M. Soleimani and M. G. Afshar, Int. J. Electrochem. Sci., 2013, 8, 8719-8729. https://doi.org/10.1016/S1452-3981(23)12922-1
  23. M. E. B. Mohamed, E. Y. Frag, and M. H. E. Brawy, Microchem. J., 2021, 164, 106065.
  24. E. Y. Frag, G. G. Mohamed, and M. Saad, J. Iran Chem. Soc., 2021, 18, 651-660. https://doi.org/10.1007/s13738-020-02051-5
  25. V. K. Gupta, A. K. Jain, G. Maheshwari, H. Lang, and Z. Ishtaiwi, Sens. Actuators B, 2006, 117(1), 99-106. https://doi.org/10.1016/j.snb.2005.11.003
  26. M. Dogan, u. M. Kocyigit, M. B. Gurdere, M. Ceylan, and Y. Budak, Med. Oncol., 2022, 39, 157.
  27. M. S. Alam, L. Liu, and D. U. Lee, Chem. Pharm. Bull., 2011, 59(11), 1413-1416. https://doi.org/10.1248/cpb.59.1413
  28. O. Ozbek, J. Turk. Chem. Soc. A: Chem., 2022, 9(3), 651-662.
  29. O. Ozbek, A. Cetin, E. Koc, and O. Isildak, Electrocatalysis, 2022, 13, 486-493. https://doi.org/10.1007/s12678-022-00738-2
  30. O. Ozbek, H. Gezegen, A. Cetin, and O. Isildak, ChemistrySelect, 2022, 7(33), e202202494.
  31. O. Ozbek, O. Isildak, and I. Isildak, Biochem. Eng. J., 2021, 176, 108181.
  32. C. Mihali and N. Vaum, Use of Plasticizers for Electrochemical Sensors, M. Luqman (ed.), Recent Advances in Plasticizers, IntechOpen, London, United Kingdom, 2012.
  33. I. Isildak, Turk. J. Chem., 2000, 24(4), 389-394.
  34. Y. Umezawa, P. Buhlmann, K. Umezawa, K. Tohda, and S. Amemiya, Pure Appl. Chem., 2000, 72(10), 1851-2082. https://doi.org/10.1351/pac200072101851
  35. R. P. Buck and E. Lindner, Pure Appl. Chem., 1994, 66(12), 2527-2536. https://doi.org/10.1351/pac199466122527
  36. M. A. Abu-Dalo, A. A. Salam, and N. S. Nassory, Int. J. Electrochem. Sci., 2015, 10, 6780-6793. https://doi.org/10.1016/S1452-3981(23)06761-5
  37. V. K. Gupta, L. P. Singh, R. Singh, N. Upadhyay, S. P. Kaur, and B. Sethi, J. Mol. Liq., 2012, 174, 11-16. https://doi.org/10.1016/j.molliq.2012.07.016
  38. A. R. Fakhari, T. A. Raji, and H. Naeimi, Sens. Actuators B, 2005, 104(2), 317-323. https://doi.org/10.1016/j.snb.2004.05.024
  39. S. Sadeghi, M. Eslahi, M. A. Naseri, H. Naeimi, H. Sharghi, and A. Shameli, Electroanal., 2003, 15(15-16), 1327-1333. https://doi.org/10.1002/elan.200302807
  40. D. Vlassici, E. Fagadar-Cosma, E. M. Pica, V. Cosma, O. Bizerea, G. Mihailescu, and L. Olenic, Sensors, 2008, 8(8), 4995-5004. https://doi.org/10.3390/s8084995
  41. O. Ozbek and O. Isildak, J. Chin. Chem. Soc., 2022, 69(7), 1060-1069. https://doi.org/10.1002/jccs.202200168